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The dynamics responsible for lifting the degeneracy of the Landau levels in the quantum Hall �QH� effect in
graphene is studied by utilizing a low-energy effective model with a contact interaction. A detailed analysis of
the solutions of the gap equation for Dirac quasiparticles is performed at both zero and nonzero temperatures.
The characteristic feature of the solutions is that the order parameters connected with the QH ferromagnetism
and magnetic catalysis scenarios necessarily coexist. The solutions reproduce correctly the experimentally
observed QH plateaus in graphene in strong magnetic fields. The phase diagram of this system in the plane of
temperature and electron chemical potential is analyzed. The phase transitions corresponding to the transitions
between different QH plateaus in graphene are described.
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I. INTRODUCTION

In this paper, we analyze the dynamics in quantum Hall
�QH� effect in graphene, a single atomic layer of graphite.1

As was experimentally discovered in Refs. 2 and 3 and theo-
retically predicted in Refs. 4–6, an anomalous quantization
takes place in this case: the filling factors are �=�4�n
+1 /2�, where n=0,1 ,2 ,¯ is the Landau-level �LL� index.
For each QH state, a fourfold �spin and sublattice-valley�
degeneracy takes place. These properties of the QH effect are
intimately connected with relativisticlike features in the
graphene dynamics.7–12

In recent experiments,13,14 it has been observed that in a
strong enough magnetic field, B�20 T, the QH plateaus
with �=0, �1, and �4 occur. This is attributed to the
magnetic-field induced splitting of the n=0 and n=1 LLs. It
is noticeable that while the degeneracy of the lowest Landau
level �LLL�, n=0, is completely lifted, only the spin degen-
eracy of the n=1 LL is removed.

On the theoretical side, there are now two leading sce-
narios for the description of these plateaus. One of them is
the quantum Hall ferromagnetism �QHF�.15–19 �The dynam-
ics of a Zeeman spin splitting enhancement considered in
Ref. 20 is intimately connected with the QHF.� The second
one is the magnetic catalysis �MC� scenario in which Dirac
masses are spontaneously produced as a result of the exci-
tonic condensation.21–24 For a brief review of these two sce-
narios, see Ref. 25.

The QHF scenario is connected with the theory of
exchange-driven spin splitting of Landau levels26 and utilizes
the dynamical framework developed for bilayer QH
systems.27 The underlying physics relies on the fact that the
spin and/or valley degeneracy of the one-particle states is
lifted by the repulsive Coulomb interaction in a many-body
system at half filling. The argument is the same as that be-
hind the Hund’s rule in atomic physics. The Coulomb energy
of the system is lowered by antisymmetrizing the coordinate
part of the many-body wave function. Because of the Fermi
statistics of the charge carriers, the corresponding lowest-
energy state must be symmetric in the spin-valley degrees of

freedom, i.e., it is spin and/or valley polarized.
On the other hand, the MC scenario is based on the phe-

nomenon of an enhancement of the density of states in infra-
red by a strong magnetic field, which catalyzes electron-hole
pairing �leading to excitonic condensates� in relativisticlike
systems. The essence of the MC phenomenon is the dimen-
sional reduction D→D−2 in the pairing dynamics on the
LLL with energy E=0 �containing both electron and hole
states�. In two dimensions, this reduction implies a nonzero,
proportional to �eB� /2��c, density of states in infrared. The
latter is responsible for a Cooper-type electron-hole pairing
even at the weakest attractive interaction between electrons
and holes. This universal phenomenon was revealed in Ref.
28 and was first considered in graphite in Refs. 9 and 10.

The difference between the QHF and MC scenarios is in
utilizing different order parameters in breaking an approxi-
mate U�4� symmetry of the Hamiltonian of graphene. This
symmetry operates in the sublattice-valley and spin spaces.
While the QHF order parameters are described by densities
of the conserved charges connected with diagonal generators
of the non-Abelian subgroup SU�4��U�4�, the order param-
eters in the MC scenario are Dirac mass terms.

One may think that the QHF and MC order parameters
should compete with each other. However, as was recently
pointed out by Gorbar et al.,29 the situation is quite different:
these two sets of the order parameters necessarily coexist,
which implies that they have the same dynamical origin. The
physics underlying their coexistence is specific for relativis-
ticlike dynamics that makes the QH dynamics of the U�4�
breakdown in graphene to be quite different from that in the
bilayer QH systems27 whose dynamics has no relativisticlike
features.

The main goal of this paper is a detailed study of the
dynamics responsible for lifting the degeneracy of the Lan-
dau levels in the quantum Hall effect in graphene using the
model of Ref. 29. To get the benchmark results that are un-
obscured by the various types of possible disorder,30–33 the
analysis in this study is done for graphene in the clean limit.
By taking into account a considerable improvement in
samples quality seen in graphene suspended above a Si /SiO2
gate electrode34 or above a graphite substrate,35 it is expected
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that the clean limit already provides a reasonable qualitative
description for some real devices �the role of disorder in this
dynamics will be briefly considered in Sec. VI�.

The main tool in our analysis is a gap equation for the
propagator of Dirac quasiparticles. The highlights of the
analysis are as follows. �1� The coexistence of the QHF and
MC order parameters is a robust phenomenon, which is
mostly based on the kinematic and symmetric properties of
the QH dynamics in graphene. �2� The process of filling the
LLs is described by varying the electron chemical potential
�0. A set of the solutions of the gap equation at a fixed �0 is
quite rich. The stable solution is selected as the solution with
the lowest free-energy density. The obtained results for the
QH effect qualitatively agree with the experimental data in
Refs. 13 and 14. �3� The existence of two types of the Dirac
masses in the QH dynamics in graphene is established. Both
of them play an important role in the dynamics. �4� The
phase diagram in the plane of temperature T and electron
chemical potential �0 is analyzed. The phase transitions cor-
responding to the transitions between different QH plateaus
are described.

The paper is organized as follows. In Sec. II we start by
describing the general features of the model itself as well as
the many-body approximation used in its analysis. After that,
in Sec. III, we derive the gap equation for Dirac quasiparti-
cles in graphene at zero and nonzero temperatures. The ne-
cessity of the coexistence of the QHF and MC order param-
eters in the solutions of the gap equation is shown. The
analysis of the quasiparticle dynamics at the LLL, which is
relevant to the �=0,�1 QH plateaus, is presented in Sec.
IV. There we first give a detailed derivation of the analytic
results of Ref. 29 at zero temperature. Then, we consider the
nonzero-temperature case by utilizing numerical calcula-
tions. In a similar fashion, in Sec. V, the quasiparticle dy-
namics at the n=1 Landau level is analyzed. In Sec. VI, we
summarize our findings in the form of the phase diagram of
graphene in the T-�0 plane. The obtained phase diagram is
rich and it allows us to describe all the recently discovered
plateaus �as well as the plateaus �=�3 and �=�5 which
have not been observed yet� in graphene in strong magnetic
fields.13,14 We also discuss the correspondence between our
results and the experimental data and point out that the co-
existence of the QHF and MC order parameters could have
important consequences for edge states, whose relevance for
the dynamics in graphene has been recently discussed in
Refs. 20, 36, and 37. Detailed derivations of some key re-
sults used in our analysis are presented in Appendixes A–D
at the end of the paper.

II. MODEL: GENERAL DESCRIPTION

A. Model: Hamiltonian and gap equation

Our approach is based on the gap equation for the propa-
gator of Dirac quasiparticles. For the description of the dy-
namics in graphene, we will use the model introduced re-
cently in Ref. 29, which in turn is a modification of the
model in Refs. 9, 10, and 21. Let us start from the descrip-
tion of the latter. In this model, while quasiparticles are con-
fined to a two-dimensional plane, the electromagnetic �Cou-

lomb� interaction between them is three dimensional in
nature. The low-energy quasiparticle excitations in graphene
are conveniently described in terms of a four-component
Dirac spinor �s

T= ��KAs ,�KBs ,�K�Bs ,�K�As� which combines
the Bloch states with spin indices s=� on the two different
sublattices �A, B� of the hexagonal graphene lattice and with
momenta near the two inequivalent valley points �K, K�� of
the two-dimensional Brillouin zone. The free quasiparticle
Hamiltonian can be recast in a relativisticlike form with the
Fermi velocity vF�106 m /s playing the role of the speed of
light,

H0 = vF� d2r�̄�	1�x + 	2�y�� , �1�

where r= �x ,y� is the position vector in the plane of graphene

and �̄=�†	0 is the Dirac conjugated spinor. In Eq. �1�, 	�
with �=0,1 ,2 are 4
4 gamma matrices belonging to a re-
ducible representation of the Dirac algebra, namely, 	�= �̃3

� ��3 , i�2 ,−i�1�, where the Pauli matrices �̃i and �i, with i
=1,2 ,3, act in the subspaces of the valleys �K, K�� and sub-
lattices �A, B�, respectively.38 The matrices satisfy the usual
anticommutation relations �	� ,	��=2g��, where g��

=diag�1,−1,−1� and � ,�=0,1 ,2. The canonical momentum
����x ,�y�=−i�� +eA /c includes the vector potential A
corresponding to a magnetic field B�, which is the compo-
nent of the external magnetic-field B orthogonal to the xy
plane of graphene.

The Coulomb interaction term has the form

HC =
1

2
� d2rd2r��†�r���r�UC�r − r���†�r����r�� , �2�

where UC�r� is the Coulomb potential in a magnetic field,
calculated in the random-phase approximation �RPA� in Ref.
10 	see Eq. �46� there
. The Hamiltonian H=H0+HC pos-
sesses a global U�4� symmetry discussed in Sec. II B. The
electron chemical potential �0 is introduced by adding the
term −�0�

†� to the Hamiltonian density. This term also
preserves the U�4� symmetry. The Zeeman interaction is in-
cluded by adding the term �BB�†�3�, where B��B� and
�B=e� / �2mc� is the Bohr magneton. Here we took into ac-
count that the Landé factor for graphene is gL�2 �our con-
vention is e0�. The spin matrix �3 has eigenvalue of +1
�−1� for the states with the spin directed along �against� the
magnetic field B.39 Such states will be called spin-up �spin-
down� states. Because of the Zeeman term, the U�4� symme-
try is broken down to a symmetry U�2�+
U�2�−, where the
subscript � labels the spin of the states on which this sub-
group operates �see Sec. II B�.

The dynamics will be treated in the Hartree-Fock �mean-
field� approximation, which is conventional and appropriate
in this case.9,10,15,16,21 Then, at zero temperature and in the
clean limit �no impurities�, the gap equation takes the form

G−1�u,u�� = S−1�u,u�� + i�	0G�u,u��	0��t − t��UC�r − r��

− i�	0 tr		0G�u,u�
�3�u − u��UC
�F��0� , �3�

where u��t ,r�, t is the time coordinate, UC
�F��0� is

the Fourier transform of UC�r� at k=0, G�u ,u��
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=�−1�0�T��u��̄�u���0 is the full quasiparticle propagator,
and

iS−1�u,u�� = 	�i��t + �0 − �BB�3�	0 − vF�� · ��
�3�u − u��
�4�

is the inverse bare quasiparticle propagator. Note that while
the second term on the right-hand side of Eq. �3� describes
the exchange interaction, the third one is the Hartree term
describing the direct interaction. The diagrammatic form of
the gap equation is shown in Fig. 1�a�.

As will be shown in Sec. III below, in order to determine
all the order parameters, the analysis of Eq. �3� has to be
done beyond the LLL approximation, which is a formidable
problem. Because of this, we follow the approach of Ref. 29
and replace the Coulomb potential UC�r� in the gap equation
by the contact interaction Gint�

2�r�. Thus, we arrive at

G−1�u,u�� = S−1�u,u�� + i�Gint	
0G�u,u�	0�3�u − u��

− i�Gint	
0 tr		0G�u,u�
�3�u − u�� , �5�

where Gint is a dimensionful coupling constant. As we will
see later, in the analysis it would be more convenient to use
a dimensionless coupling constant �=Gint� / �4�3/2�2vF

2� in-
stead of Gint �note that � is the energy cutoff parameter
which is required when a contact interaction is used�. The
corresponding diagrammatic form of the equation is given in
Fig. 1�b�. A similar approximation is commonly used in
quantum chromodynamics �QCD�, where the long-range
gluon interaction is replaced by the contact Nambu–Jona-
Lasinio one. This leads to a good description of many fea-
tures of the nonperturbative dynamics in low-energy region
of QCD �for a review see, for example, Ref. 40�. By taking
into account the universality of the MC phenomenon and the
fact that the symmetry and kinematic structures of Eqs. �3�
and �5� are the same, we expect that approximate gap Eq. �5�
should be at least qualitatively reliable for the description of
the LLL and the first few LLs, say, with n=�1.

As to the value of the cutoff �, note that, in a strong
magnetic field, the Landau scale,

�B � �2��eB��vF
2 /c � 424��B�	T
� K, �6�

is the only relevant energy scale in the dynamics with the
Coulomb interaction. This suggests that the ultraviolet cutoff
� should be taken of order �B in the approximation with the
contact interaction. The dimensionful coupling constant Gint
then becomes Gint�4�3/2�2vF

2� /�B.
Before concluding this section, the following remark con-

cerning the present approximation is in order. While there is
Debye screening at nonzero chemical potential, the situation
is more complicated near the Dirac point with �0=0. In that
case, while for subcritical values of the Coulomb coupling
constant41 the polarization effects lead only to its screening
without changing the form of the Coulomb interactions at
large distances,42 they lead to a drastic change of the form of
the interactions for a supercritical coupling.43 In the present
work, the dynamics with a subcritical coupling is utilized
when no dynamical gaps are generated without a magnetic
field �this is in agreement with the experiments2,3�. In our
approximation, utilizing smeared contact interactions with an
ultraviolet cutoff ���B, the contribution of large energies
��B is suppressed much stronger than for the subcritical
Coulomb-type interactions. However, because the dominant
contribution in the gap equation comes from energies �
��B, we expect that the present approximation is qualita-
tively reliable even near the Dirac point.

B. Model: Symmetry and order parameters

The Hamiltonian H=H0+HC, with H0 and HC given in
Eqs. �1� and �2�, respectively, possesses the U�4� symmetry
with the following 16 generators �see, for example, Refs. 10
and 21�:

��

2
� I4,

��

2i
� 	3,

��

2
� 	5,

��

2
� 	3	5, �7�

where I4 is the 4
4 Dirac unit matrix and ��, with �
=0,1 ,2 ,3, are four Pauli matrices connected with the spin
degrees of freedom ��0 is the 2
2 unit matrix�. In the rep-
resentation used in the present paper �for the definition of the
	� matrices, see Sec. II A�, the Dirac matrices 	3 and 	5

� i	0	1	2	3 are

	3 = i�0 I

I 0
�, 	5 = i� 0 I

− I 0
� , �8�

where I is the 2
2 unit matrix. Note that while the Dirac
matrices 	0 and �= �	1 ,	2� anticommute with 	3 and 	5,
they commute with the diagonal matrix 	3	5=−	5	3,

	3	5 = � I 0

0 − I
� . �9�

The matrix 	3	5 is called a pseudospin operator.
The total Hamiltonian,

Htot � H +� d2r	�BB�†�3� − �0�
†�
 , �10�

possesses a lower symmetry. Because of the Zeeman term
�BB�†�3�, the U�4� symmetry is broken down to the “fla-

s

s

s

s s s ss

s s s sss

s

s

FIG. 1. The diagrammatic form of the gap equation in the
Hartree-Fock �mean-field� approximation. The upper �lower� dia-
gram corresponds to the form of the gap equation with the long-
range Coulomb �contact� interaction. The indices denote quasipar-
ticle spins.
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vor” symmetry U�2�+
U�2�−, where the subscript � corre-
sponds to spin-up and spin-down states, respectively. The
generators of the U�2�s, with s=�, are I4 � Ps, −i	3 � Ps,
	5 � Ps, and 	3	5 � Ps, where P�= �1��3� /2 are the projec-
tors on spin-up and spin-down states.

Our goal is to find all solutions of Eq. �5� both with intact
and spontaneously broken SU�2�s symmetry, where SU�2�s is
the largest non-Abelian subgroup of the U�2�s. The Dirac

mass term �̃s�̄Ps�� �̃s�
†	0Ps�, where �̃s is a Dirac gap

�mass�,44 is assigned to the triplet representation of the
SU�2�s, and the generation of such a mass would lead to a
spontaneous breakdown of the flavor SU�2�s symmetry down

to the Ũ�1�s with the generator 	3	5 � Ps.
9,10,21 There is also

a Dirac mass term of the form �s�̄	
3	5Ps� that is a singlet

with respect to SU�2�s, and therefore its generation would
not break this symmetry. On the other hand, while the triplet
mass term is even under time reversal T, the singlet mass
term is T odd �for a recent review of the transformation
properties of different mass terms in graphene, see Ref. 45�.
Note that the possibility of a singlet Dirac mass like � was
first discussed in relation to graphite about 20 years ago.8

The masses �s and �̃s are related to the MC order param-

eters ��̄	3	5Ps� and ��̄Ps�. In terms of the Bloch com-
ponents of the spinors, the corresponding operators take the
following forms:

�s:�̄	
3	5Ps� = �KAs

† �KAs − �K�As
† �K�As − �KBs

† �KBs

+ �K�Bs
† �K�Bs, �11�

�̃s:�̄Ps� = �KAs
† �KAs + �K�As

† �K�As − �KBs
† �KBs − �K�Bs

† �K�Bs.

�12�

The expressions on the right-hand side further clarify the
physical meaning of the Dirac mass parameters as the
Lagrange multipliers that control various density imbalances
of electrons at the two valleys and the two sublattices. In
particular, the order parameter 	Eq. �12�
, connected with the
triplet Dirac mass, describes the charge-density imbalance
between the two sublattices, i.e., a charge-density wave.9,21

As revealed in Ref. 29 and will be discussed in detail in
Sec. III, these MC order parameters necessarily coexist with
QHF ones in the solutions of Eq. �5�. More precisely, for a
fixed spin, the full inverse quasiparticle propagator takes the
following general form 	compare to Eq. �4�
:

iGs
−1�u,u�� = 	�i��t + �s + �̃s	

3	5�	0 − vF�� · �� − �̃s

+ �s	
3	5
�3�u − u�� , �13�

where the parameters �s, �̃s, �s, and �̃s are determined from
Eq. �5�. Note that the full electron chemical potentials ��
include the Zeeman energy �Z with

Z � �BB = 0.67B	T
 K. �14�

The chemical potential �̃s is related to the density of the
conserved pseudospin charge �†	3	5Ps�, which is assigned
to the triplet representation of the SU�2�s. Therefore, unlike

the masses �s and �̃s, the chemical potentials �3���+
−�−� /2 and �̃s are related to the conventional QHF order
parameters: the spin density ��†�3� and the pseudospin
density ��†	3	5Ps�, respectively. In terms of the Bloch
components, the corresponding operators take the following
forms:

�3:�†�3� =
1

2 �
�=K,K�

�
a=A,B

���a+
† ��a+ − ��a−

† ��a−� , �15�

�̃s:�
†	3	5Ps� = �KAs

† �KAs − �K�As
† �K�As + �KBs

† �KBs

− �K�Bs
† �K�Bs. �16�

By comparing the last expression with Eq. �12�, we see that

while the triplet MC order parameter related to �̃s describes
the charge-density imbalance between the two graphene sub-
lattices, the pseudospin density �related to �̃s� describes the
charge-density imbalance between the two valley points in
the Brillouin zone. On the other hand, as seen from Eq. �15�,
�3 is related to the conventional ferromagnetic order param-
eter ��†�3�.

The following remark is in order. Because of the relation
	5= i	0	1	2	3, the operator in Eq. �16� can be rewritten as

i�̄	1	2Ps�. The latter has the same form as the anomalous
magnetic moment operator in Quantum Electrodynamics
�QED�. However, unlike QED, in graphene, it describes not
the polarization of the spin degrees of freedom but that of the
pseudospin ones, related to the valleys and sublattices. Be-
cause of that, this operator can be called the anomalous mag-
netic pseudomoment operator.

Let us describe the breakdown of the U�4� symmetry
down to the U�2�+
U�2�− flavor symmetry, responsible for
a spin gap, in more detail. Because of the Zeeman term, this
breakdown is not spontaneous but explicit. The point how-
ever is that, as was shown in Ref. 20, a magnetic field leads
to a strong enhancement of the spin gap in graphene. Such an
enhancement is reflected in a large chemical potential �3
= ��+−�−� /2�Z and the corresponding QHF order param-
eter ��†�3�. However as was pointed out in Ref. 29 and
will be shown below in Sec. IV, it is not all. There is also a
large contribution to the spin gap connected with the flavor
singlet Dirac mass �3���+−�−� /2 and the corresponding

MC order parameter ��̄	3	5�3�. This feature leads to im-
portant consequences for the dynamics of edge states in
graphene �see Secs. IV and VI�.

As will be shown in Sec. IV C, the spin gap may remain
large even in the limit when the Zeeman energy Z=�BB goes
to zero. In this limit, a genuine spontaneous breakdown of
the U�4� takes place. In the realistic case with a nonzero but
small Z, one can say that a quasispontaneous breakdown of
the U�4� is realized.

The U�2�+
U�2�− is an exact symmetry of the total
Hamiltonian Htot 	Eq. �10�
 of the continuum effective
theory. However, as was pointed out in Ref. 17 �see also
Refs. 19, 22, and 46�, it is not exact for the Hamiltonian on
the graphene lattice. In fact, there are small on-site repulsion
interaction terms which break the U�2�+
U�2�− symmetry
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down to a U�1�+
Z2+
U�1�−
Z2− subgroup, where the
elements of the discrete group Z2s are 	5 � Ps+ I4 � P−s and
the unit matrix. Unlike a spontaneous breakdown of continu-
ous symmetries, a spontaneous breakdown of the discrete

symmetry Z2�, with the order parameters ��̄P�� and
��†	3	5P��, is not forbidden by the Mermin-Wagner
theorem47 at finite temperatures in a planar system. This ob-
servation is of relevance for the description of the ground
state responsible for the �=�1 plateaus �see Sec. IV D�.
Thus, there are six order parameters describing the break-
down of the U�4� symmetry: the two singlet order parameters
connected with �3 and �3 and the four triplet ones connected

with �̃� and �̃�.
By extracting the location of the poles in full propagator

G�u ,u��, which is given in terms of the sum over separate
LL contributions in Eq. �A27�, it is straightforward to derive
the dispersion relations for the quasiparticles in graphene.
The dispersion relations for LLs with n�1 are

�ns
��� = − �s + ��̃s �

�n�B
2 + ��̃s + ��s�2, �17�

where �=�1 and the two signs in front of the square root
correspond to the energy levels above and below the Dirac
point. In the case of the LLL, which is special, the corre-
sponding dispersion relations read

�s
��� = − �s + �	�̃s sgn�eB�� + �̃s
 + �s sgn�eB�� . �18�

As shown in Appendix A 2, the parameter � in Eqs. �17� and
�18� is connected with the eigenvalues of the diagonal pseu-
dospin matrix 	3	5 in Eq. �9�. For the LLs with n�1, the
value �=�1 in Eq. �17� corresponds to the eigenvalues of
�1 of 	3	5. On the other hand, for LLL, the value �=�1 in
Eq. �18� corresponds to sgn�eB��
 ��1�, with �1 being the
eigenvalues of 	3	5. One can see from Eqs. �17� and �18�
that at a fixed spin, the terms with � are responsible for
splitting of LLs. We will return to this issue in Sec. IV.

III. GAP EQUATION: EXPLICIT FORM AT T=0 AND TÅ0
AND COEXISTENCE OF QHF AND MC ORDER

PARAMETERS

In this section, we will present the explicit equations for
the Dirac masses and the chemical potentials at zero and
finite temperatures. In particular, it will be shown that the
QHF and MC order parameters necessarily coexist.

The equations for the Dirac masses �s and �̃s and the
chemical potentials �s and �̃s follow from the matrix form of
the gap equation in Eq. �5� and expression �13�. Their deri-
vation, while straightforward, is rather tedious. It is consid-
ered in Appendix A in detail. At zero temperature, the equa-
tions are

�̃s =
A

2�− 	sgn��s − �̃s�����s − �̃s� − E0s
+ �

− sgn��s + �̃s�����s + �̃s� − E0s
− �
sgn�eB��

+ �
n=0

� � ��̃s + �s���Ens
+ − ��s − �̃s��

Ens
+

+
��̃s − �s���Ens

− − ��s + �̃s��
Ens

− �	1 + ��n − 1�
� ,

�19�

�s =
A

2�− 	sgn��s − �̃s�����s − �̃s� − E0s
+ �

+ sgn��s + �̃s�����s + �̃s� − E0s
− �
sgn�eB��

+ �
n=0

� � ��̃s + �s���Ens
+ − ��s − �̃s��

Ens
+

−
��̃s − �s���Ens

− − ��s + �̃s��
Ens

− �	1 + ��n − 1�
� ,

�20�

�̃s =
A

2����̃s + �s���E0s
+ − ��s − �̃s��

E0s
+

+
��̃s − �s���E0s

− − ��s + �̃s��
E0s

− �sgn�eB��

+ �
n=0

�

	− sgn��s − �̃s�����s − �̃s� − Ens
+ �

+ sgn��s + �̃s�����s + �̃s� − Ens
− �
	1 + ��n − 1�
� ,

�21�

�s = �̄s + X +
A

2�− � ��̃s + �s���E0s
+ − ��s − �̃s��

E0s
+

−
��̃s − �s���E0s

− − ��s + �̃s��
E0s

− �sgn�eB��

+ �
n=0

�

	sgn��s − �̃s�����s − �̃s� − Ens
+ �

+ sgn��s + �̃s�����s + �̃s� − Ens
− �
	1 + ��n − 1�
� ,

�22�

where the step function is defined by ��x�=1 for x�0 and
��x�=0 for x�0. Regarding the other notation, �̄�
��0�Z is the bare electron chemical potential which
includes the Zeeman energy Z=�BB, and Ens

�

=�n�B
2 + ��̃s��s�2 are quasiparticle energies. In these equa-

tions, we introduced an energy scale, A, that plays an impor-
tant role throughout the analysis. It is determined by the
value of the magnetic field and the coupling-constant
strength,
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A �
Gint�eB��

8��c
=

����B
2

4�
. �23�

The second term on the right-hand side in Eq. �22� is defined
as follows:

X = �
s=�

Xs, �24�

where

Xs = − 2A�− � ��̃s + �s���E0s
+ − ��s − �̃s��

E0s
+

−
��̃s − �s���E0s

− − ��s + �̃s��
E0s

− �sgn�eB��

+ �
n=0

�

	sgn��s − �̃s�����s − �̃s� − Ens
+ �

+ sgn��s + �̃s�����s + �̃s� − Ens
− �
	1 + ��n − 1�
� .

�25�

The following comment is in order here. Because of the Har-
tree term in Eq. �5�, the equations for the spin-up and spin-
down parameters do not decouple: they are mixed via the X
term in Eq. �22�. Fortunately, it is the only place affected by
the Hartree term. As shown in Appendix B, this fact strongly
simplifies the analysis of the system of Eqs. �19�–�22�. This
point also clearly reflects the essential difference between the
roles played by the exchange and Hartree interactions in the
quasiparticle dynamics of graphene. While the former domi-
nates in producing the QHF and MC order parameters, the
latter participates only in the renormalization of the electron
chemical potential, which is relevant for the filling of LLs.

Since the step functions in the above set of equations

depend on �s��̃s and �̃s��s, it is more convenient to re-
write the gap equations for the following set of parameters:

�s
��� = �s � �̃s, �s

��� = �s � �̃s. �26�

In the numerical analysis, we always consider a nonzero tem-
perature. This is implemented by utilizing the Matsubara for-
malism. Using the identities

T �
n=−�

�
1

	�2n + 1��T + i�
2 + E2 =
1

2E

sinh�E/T�
cosh�E/T� + cosh��/T�

,

�27�

T �
n=−�

�
− i�2n + 1��T + �

	�2n + 1��T + i�
2 + E2 = −
1

2

sinh��/T�
cosh�E/T� + cosh��/T�

,

�28�

it is straightforward to write the equations at nonzero tem-
perature. One can check that the prescription for modifying
Eqs. �19�–�22� at T�0 is to replace

sgn��s
��������s

���� − Ens
�� →

sinh
�s

���

T

cosh
Ens
�

T
+ cosh

�s
���

T

, �29�

��Ens
� − ��s

����� →
sinh

Ens
�

T

cosh
Ens
�

T
+ cosh

�s
���

T

. �30�

This leads to the following set of equations:

�s
��� = Af1��s

���,�s
���� , �31�

�s
��� = �̄s + Af2��s

���,�s
���� + 2Af2��s

���,�s
����

+ 2Af2��−s
���,�−s

���� + 2Af2��−s
���,�−s

���� , �32�

where �s
��� and �s

��� are given in Eq. �26�, and

f1��s
���,�s

���� =

sinh��s
���

T
� − s� sinh��s

���

T
�

cosh��s
���

T
� + cosh��s

���

T
�

+ �
n=1

� 2�s
��� sinh�Ens

�

T
�

Ens
��cosh�Ens

�

T
� + cosh��s

���

T
�� ,

�33�

f2��s
���,�s

���� =

s� sinh��s
���

T
� − sinh��s

���

T
�

cosh��s
���

T
� + cosh��s

���

T
�

− �
n=1

� 2 sinh��s
���

T
�

cosh�Ens
�

T
� + cosh��s

���

T
� , �34�

with s��sgn�eB�� and Ens
�=�n�B

2 + ��s
����2.

Let us now show that the QHF and MC order parameters
should always coexist in this dynamics. Suppose that Eqs.
�31� and �32� have a solution with some of the chemical
potentials �s

� being nonzero but the Dirac masses being
zero, �s

���=0. Then, the left-hand side of Eq. �31� is equal to
zero. On the other hand, taking into account expression �33�
for the function f1, we find that for �s

���=0 the right-hand
side of this equation takes the form

f1�0,�s
���� =

− s� sinh��s
���

T
�

1 + cosh��s
���

T
� = − s� tanh��s

���

2T
� ,

�35�
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and it could be zero only if all chemical potentials �s
���

disappear, in contradiction with our assumption. Therefore
we conclude that the QHF and MC order parameters in this
dynamics necessarily coexist indeed. This is perhaps one of
the central observations in this study.

Which factors underlie this feature of the graphene dy-
namics in a magnetic field? It is the relativistic nature of the
free Hamiltonian H0 in Eq. �1� and the special features of the
LLs associated with it. To see this, note that while the triplet

Dirac mass �̃s multiplies the unit Dirac matrix I4, the triplet
chemical potential �̃s comes with the matrix 	3	5	0 in the
inverse propagator Gs

−1 in Eq. �13�. Let us trace how these
two structures are connected with each other. The point is
that there are terms with i	1	2 sgn�eB�� matrix in the expan-
sion of the propagator Gs over LLs 	see Eq. �A21�
. Taking
into account the definition 	5= i	0	1	2	3, we have i	1	2

=	3	5	0. Then, through the exchange term �	0Gs	
0 in gap

Eq. �5�, the �̃s term in the inverse propagator Gs
−1 necessarily

induces the term with the chemical potential �̃s. In the same
way, the singlet Dirac mass �s in Gs

−1 is connected with the
singlet chemical potential �s.

These arguments are based on the kinematic structure of
gap Eq. �5�, which is the same as that for Eq. �3� with the
Coulomb interaction. Taking into account the universality of
the MC phenomenon, we conclude that the coexistence of
the QHF and MC order parameters is a robust feature of the
QH dynamics in graphene.

The necessity of the coexistence of the QHF and MC
order parameters can be clearly seen in the case of the dy-
namics on the LLL. As follows from Eq. �A27�, the LLL
propagator contains only the combinations −�s

+�s sgn�eB�� and �̃s sgn�eB��+ �̃s. Therefore, in this case,
the QHF and MC parameters not only coexist but also they
are not independent, which in turn reflects the fact that the
sublattice and valley degrees of freedom are not independent
on the LLL. In particular, by using Eqs. �11�, �12�, �15�, and
�16�, one can easily check that, because of the projector P−
= 	1− i	1	2 sgn�eB��
 /2 in the LLL propagator 	see Eqs.

�A21� and �A22�
, the operators �†Ps� and �̄	3	5Ps�

��†	3	5Ps� and �̄Ps��, determining the order parameters

related to �s and �s ��̃s and �̃s�, coincide up to a sign factor
sgn�eB��.48 This fact in particular implies that in order to
determine all the order parameters, it is necessary to analyze
the gap equation beyond the LLL approximation.

The important point, however, is that this special feature
of the LLL takes place only on an infinite plane. In real
graphene samples with boundaries the situation is different:
the QHF and MC parameters on the LLL become
independent.49,50 As is discussed in Sec. VI, this leads to
important consequences for the dynamics of edge states on
the LLL.

IV. DYNAMICS ON LLL: �=0, �= ±1, AND �= ±2
PLATEAUS

As was already discussed in Sec. I, at magnetic fields B
�10 T, the plateaus with the filling factors �=�4�n
+1 /2� are observed in the QH effect in graphene.2,3 At stron-

ger magnetic fields, other plateaus with �=0 and �=�1 oc-
cur: while the former arises at B�10 T, the latter appear at
B�20 T.13,14 In this section, we will describe the dynamics
underlying these plateaus and the plateaus �=�2 corre-
sponding to the gap between the LLL and the n=1 LL by
using the solutions of the gap equation presented in Sec.
IV A. We will consider positive � and �0 �the dynamics with
negative � and �0 is related by electron-hole symmetry and
will not be discussed separately�. As will be shown below,
there is a large number of the solutions corresponding to the
same �0. In order to find the most stable of them, we com-
pare the free-energy density � for the solutions. The deriva-
tion of the expression for � is presented in Appendix C.

A. Overview of analytic solutions at LLL

The �=0, �=�1, and �=�2 plateaus are connected with
a process of doping of the LLL, which is described by vary-
ing the electron chemical potential �0. Therefore we start our
analysis by reviewing the solutions to the gap equations in
the case when �0 is much less than the Landau energy scale,
i.e., �0��B. At zero temperature the corresponding gap
equations are analyzed analytically in Appendix B. It is con-
cluded there that only the following three stable solutions are
realized.

�i� The solution with singlet Dirac masses for both spin-up
and spin-down quasiparticles,

�̃+ = �̃+ = 0, �+ = �̄+ − A, �+ = s�M ,

�̃− = �̃− = 0, �− = �̄− + A, �− = − s�M . �36�

	By definition M �A / �1−�� and ��4A� / ����B
2�; see Eq.

�B9� and its derivation in Appendix B.
 This solution is en-
ergetically most favorable for 0��0�2A+Z.51 It is one of
the several solutions with nonvanishing singlet Dirac masses
and we call it the S1 solution �here S stands for singlet�.
Because of the opposite signs of both the masses �+ and �−
and the chemical potentials �+ and �−, the explicit break-
down of the U�4� symmetry down to U�2�+
U�2�− by the
Zeeman term is strongly enhanced by the dynamics. Since all
triplet order parameters vanish, the flavor U�2�+
U�2�−
symmetry is intact in the state described by this solution. As
will be discussed in Sec. IV C below, the S1 solution corre-
sponds to the �=0 plateau.

�ii� The hybrid solution with a triplet Dirac mass for spin
up and a singlet Dirac mass for spin-down quasiparticles,

�̃+ = M, �̃+ = As�, �+ = �̄+ − 4A, �+ = 0,

�̃− = 0, �̃− = 0, �− = �̄− − 3A, �− = − s�M . �37�

It is most favorable for 2A+Z��0�6A+Z. We call it the
H1 solution �here H stands for hybrid, meaning that the so-
lution is a mixture of the singlet and triplet parameters�. In
this case, while the SU�2�+�U�2�+ symmetry connected
with spin up is spontaneously broken down to U�1�+ �whose
generator is 	3	5 � P+�, the SU�2�−�U�2�− symmetry con-
nected with spin down remains intact. As will be shown in
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Sec. IV D, the H1 solution corresponds to the �=1 plateau.
�iii� The solution with equal singlet Dirac masses for both

spin-up and spin-down quasiparticles,

�̃+ = �̃+ = 0, �+ = �̄+ − 7A, �+ = − s�M ,

�̃− = �̃− = 0, �− = �̄− − 7A, �− = − s�M . �38�

It is most favorable for �06A+Z. We call it the S2 solu-
tion. 	Note that the dynamics in the n=1 LL will set an upper
limit for the range where the S2 solution is the ground state
�see Sec. V below�.
 In the state given by the S2 solution, the
U�4� symmetry is broken down to U�2�+
U�2�− only by the
Zeeman term. Indeed, the singlet masses and the dynamical
contributions to the chemical potentials are of the same sign
for both spin orientations and thus have no effect on breaking
any symmetry. As will be shown in Sec. IV E, the S2 solu-
tion corresponds to the �=2 plateau connected with the gap
between the filled LLL and the empty n=1 LL.

The free-energy densities for the above three solutions are
given by the following expressions �see Appendix B 6�:

� = −
�eB��
2��c

�M + A + 2Z + h� for 0��0 � 2A + Z ,

�39�

� = −
�eB��
2��c

�M − A + Z + h + �0� �40�

for

2A + Z��0 � 6A + Z ,

� = −
�eB��
2��c

�M − 7A + h + 2�0� for 6A + Z��0,

�41�

where the parameter h is defined in Eq. �B56�. We note that
although the parameters of the solutions jump abruptly at the
transition points, �0=2A+Z and �0=6A+Z, their free-
energy densities match exactly. We conclude, therefore, that
first-order phase transitions take place at these values of the
electron chemical potential �0.

The free-energy densities in Eqs. �39�–�41� are shown as
functions of the chemical potential �0 in the top panel of Fig.
2. In order to plot the results, we took M =4.84
10−2�B and
A=3.90
10−2�B which coincide with the values of the cor-
responding dynamical parameters in the numerical analysis.
For comparison, the numerical results at nonzero but suffi-
ciently small temperature are shown in the bottom panel of
Fig. 2. As we see, the agreement is very good. It is interest-
ing to note that the singlet-type numerical solution, given by
the solid line, spans both the S1 and S2 solutions, as well as
the intermediate �metastable� branch connecting them. In ad-
dition to the S1, H1, and S2 solutions, numerical results for
several other �metastable� solutions are shown. The meta-
stable solutions are discussed in Sec. IV F below.

B. Numerical analysis at LLL

In this section, we give the key details regarding our nu-
merical analysis. Throughout this paper the default choice of
the magnetic field in the numerical calculations is B=35 T.
The corresponding Landau energy scale is �B �B=35 T
�2510 K. In order to do the numerical calculations in the
model at hand, we use a simple regularization method that
renders the formally defined divergent sum in Eq. �33� finite.
In particular, we redefine the corresponding function as fol-
lows:

f1��s
���,�s

���� =

sinh��s
���

T
� − s� sinh��s

���

T
�

cosh��s
���

T
� + cosh��s

���

T
�

+ �
n=1

� 2�s
��� sinh�Ens

�

T
����n�B,��

Ens
��cosh�Ens

�

T
� + cosh��s

���

T
�� ,

�42�

where ��x ,�� is a smooth-cutoff function defined by

��x,�� =
sinh��/���

cosh�x/��� + cosh��/���
, �43�

with �=5000 K and ��=� /20=250 K. The value of �
corresponds to an approximate point of the high-energy cut-
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FIG. 2. �Color online� Free-energy density versus the electron
chemical potential �0 for several different solutions found analyti-
cally �top panel� and numerically �bottom panel� in a range of �0

relevant to the dynamics in the lowest Landau level. The numerical
results are shown for a nonzero but small temperature, T=1 K. The
values of the electron chemical potential are given in units of the
Landau energy scale �B, and the free-energy densities are given in
units of �B / l2, where l=��c / �eB�� is the magnetic length.
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off, and the value of �� gives the extent of the smearing
region in either direction from �. �Note that the energy scale
� is about the same as the energy of the n=4 Landau level at
B=35 T.�

One should emphasize that the specific choice of the cut-
off energy scale � has little effect on the qualitative as well
as quantitative results of our analysis, provided the dynami-
cal energy scales A and M =A / �1−�� are kept fixed �see the
discussion in the end of this section�. Here we assume that
the value of the cutoff is sufficiently large to avoid the re-
duction in the phase space relevant for the quasiparticle dy-
namics at the n=0 and n=1 LLs.

Because of the cutoff function ��x ,�� the sum over n on
the right-hand side of Eq. �42� is rapidly convergent. In the
numerical calculations, therefore, a sufficiently good accu-
racy may be achieved by keeping a finite number of terms in
the sum. The optimum choice for the maximum value of
index n is nmax= 	14�2 /�B

2
, where the square brackets mean
the integer number nearest to the result in the brackets. This
choice is large enough to ensure a high precision and, at the
same time, it is small enough to make the calculation fast.

While the f2 function in Eq. �34� is finite, for consistency
we redefine it in the same way as function f1 by smoothly
cutting off the contributions of large-n LLs,

f2��s
���,�s

���� =

s� sinh��s
���

T
� − sinh��s

���

T
�

cosh��s
���

T
� + cosh��s

���

T
�

− �
n=1

� 2 sinh��s
���

T
����n�B,��

cosh�Ens
�

T
� + cosh��s

���

T
� , �44�

where ��x ,�� is defined in Eq. �43�. The numerical result for
the sum in f2 is also approximated by dropping the terms
with nnmax where nmax is given above.

By analyzing the solutions to Eqs. �31� and �32� at very
low temperatures, we reproduce all the analytic solutions de-
rived in Appendix B. For the choice of the magnetic field
B=35 T the values of the two dynamical energy parameters
A and M are given by

A � 98 K, M � 122 K. �45�

As is easy to check, these correspond to the dimensionless
coupling ��0.196. Here one should keep in mind that the
smooth-cutoff regularization used in our numerical calcula-
tions is not the same as in the analytical calculations 	see, for
example, Eq. �B6�
. Despite this difference, all analytical re-
sults agree very well even quantitatively with the corre-
sponding numerical ones when expressed in terms of A and
M parameters.

C. Plateau �=0

The plateau �=0 is connected with a range of electron
chemical potentials in the vicinity of the Dirac neutral point
with �0=0. In this case the S1 solution with singlet Dirac

masses of opposite signs for spin-up and spin-down quasi-
particles 	see Eq. �36�
 is most favorable energetically and
therefore is the ground-state solution, provided �0�2A+Z
�other solutions related to the Dirac neutral point are dis-
cussed in Sec. IV F below�.

From dispersion relation �18�, we find that while �+
=−�0+Z+M +A is positive for spin-up states, �−=−�0−Z
−M −A is negative for spin-down states, i.e., the LLL is half
filled �the energy spectrum in this solution is � independent�.
Therefore there is a nonzero spin gap �E0=�+−�− associ-
ated with the �=0 plateau. The value of this gap is �E0
=2�Z+A�+2M.

While no exact symmetry is broken in the state described
by the S1 solution, the explicit spin-symmetry breaking by
the Zeeman term Z is strongly enhanced by the dynamical
contribution M +A. In this case, it is appropriate to talk about
the dynamical symmetry breaking of the approximate spin
symmetry. This is also evident from studying the temperature
dependence of the MC and QHF order parameters in Fig. 3.
In the two panels, we compare the results in the models with
the exact �top panel� and approximate �bottom panel� spin
symmetry. In the first case we take Z=0 and see that the
spontaneous spin-symmetry breaking occurs at low tempera-
tures. The symmetry is restored at about T�0.9M in a typi-
cal second-order phase transition �recall that we work in the
mean-field approximation�. In the second case, a nonzero
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FIG. 3. �Color online� Temperature dependence of the nontrivial
order parameters in the �=0 QH state described by the S1 solution.
The results in a model with a vanishing Zeeman energy �Z=0� are
shown in the top panel, and the results in a realistic model with a
nonzero Zeeman energy �Z�0� are shown in the bottom panel.

Note that �̃�= �̃�=0 in both cases. The values of the temperature
and the order parameters are given in units of the dynamical scale
M.
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Zeeman energy term �Z�23.51 K at B=35 T� breaks the
spin symmetry explicitly and its restoration is impossible
even at very high temperatures. However, even in this latter
case, there is a well pronounced crossover �around T
�0.9M� between the regimes of low and high temperatures,
which can be quantified by the relative strength of the bare
Zeeman and dynamical contributions.

The order parameters for solution S1 versus the electron
chemical potential �0 are shown in Fig. 4 for several differ-
ent values of the temperature. At T=0 this solution is the

ground state for �0�0.09�B. At sufficiently low temperature,
the main qualitative feature of this solution is that the singlet
Dirac masses for spin-up and spin-down quasiparticles have
opposite signs, �+=−�−. This defines the configuration of
the MC order parameters that is formally invariant under the
time-reversal symmetry. �Of course, the time-reversal sym-
metry is still explicitly broken by the external magnetic
field.� As the temperature increases, the approximate relation
�+�−�− may hold at �0�0, but deviations from such a
relation grow with increasing �0.

It should be emphasized that solution S1 is continuously
connected with solution S2 responsible for the �=2 QH pla-
teau �see Sec. IV E below�. At low temperatures, the inter-
mediate branch between the S1 and S2 solutions is meta-
stable. At high temperatures, however, it becomes stable and
the qualitative difference between the two solutions disap-
pears.

The conclusion that the �=0 state is related to the spin
gap agrees with the scenario in Ref. 20 and the experiments
reported in Refs. 14 and 36. The fact established in the
present paper that both �3 and the singlet Dirac mass �3
contribute to the gap �E0 is noticeable. As was already
pointed out in Sec. III, unlike the case of an infinite plane, in
graphene samples with boundaries, the parameters �3 and �3
are independent on the LLL. As will be discussed in Sec. VI,
this fact could have important consequences for the dynam-
ics of edge states.

In conclusion, the following comment is in order. As one
can see in the bottom panel of Fig. 2, besides the S1 solution,
there is another—triplet �T�—solution around the Dirac neu-
tral point. In the T solution, given in Eq. �B33�, both spin-up
and spin-down quasiparticle states have a triplet Dirac mass.
Calculating the difference of the free-energy densities for
these two solutions, one finds that ��=�S1−�T
=−Z�eB� /��c. Therefore, it is the Zeeman term which makes
the S1 solution more favorable; without it, the S1 and T
solutions would correspond to two degenerate ground states.
It would be interesting to figure out the role of the small
on-site repulsion interaction terms17,19,22,46 mentioned in Sec.
II B in choosing the genuine ground state in the present dy-
namics.

D. Plateau �=1

As was pointed out in Sec. IV A, for larger �0 the hybrid
H1 solution 	Eq. �37�
, with a triplet Dirac mass for spin-up
quasiparticles and a singlet Dirac mass for spin-down quasi-
particles, is most favorable. It is the ground state for 2A+Z
��0�6A+Z. As one can easily check by using Eq. �18�,
while now �+

�+�0, the energies �+
�−� and �−

�+�=�−
�−� are nega-

tive. Consequently, the LLL is now three-quarter filled and,
therefore, the gap �E1=�+

�+�−�+
�−�=2�M +A� corresponds to

the �=1 plateau. Notably, the Zeeman term does not enter
the value of the gap. Unlike the �=0 state, therefore, the gap
in the �=1 state is directly related to the spontaneous break-
down of the flavor symmetry SU�2�+.

The last point regarding the nature of the ground state
described by the H1 solution has important consequences for
the physical properties of the �=1 QH state. Since the cou-

S1�S2 solution T�1 K
T�10 K
T�50 K
T�100 K

T�150 K
T�500 K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

�1.0

�0.5

0.0

0.5

1.0

Μ0�ΕB

�
�
�M

S1�S2 solution

T�1 K
T�10 K
T�50 K
T�100 K
T�150 K
T�500 K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

Μ0�ΕB

Μ �
�M

(a)

(b)

S1�S2 solution T�1 K
T�10 K
T�50 K
T�100 K

T�150 K
T�500 K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

�1.0

�0.5

0.0

0.5

1.0

Μ0�ΕB

�
�
�M

(c)

S1�S2 solution

T�1 K
T�10 K
T�50 K
T�100 K
T�150 K
T�500 K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

Μ0�ΕB

Μ �
�M

(d)

FIG. 4. �Color online� Order parameters for the singlet solution
S1 /S2 as functions of the electron chemical potential �0 for several
different values of temperature.
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pling constant Gint in the present model is proportional to
1 /�B �see Sec. II A�, Eq. �23� implies that the dynamical
parameters A and M, and therefore the gap �E1, scale with
the magnetic field as ��eB��. This fact agrees with the de-
pendence of the activation energy in the �=1 state observed
in Ref. 14.

The critical temperature at which the SU�2�+ symmetry is

restored, i.e., when the triplet parameters �̃+ and �̃+ vanish,
is Tc�0.9M �110 K. The restoration is described by a con-
ventional second-order phase transition.

The temperature dependence of the hybrid H1 solution is
rather interesting too. This is summarized in Fig. 5 where the
nontrivial order parameters and chemical potentials are
shown for several values of the temperature in the range
from 1 to 100 K. One of the most spectacular features of this
dependence is a revival of the singlet mass �+ at finite tem-
perature shown in Fig. 5 �recall that it vanishes at zero tem-
perature�. This phenomenon is intimately connected with the
general conclusion in Sec. III that at a fixed value of spin s
and any value of temperature, there are no nontrivial solu-

tions of the gap equation with the both masses �s and �̃s

being zero. Indeed, at TTc, when the triplet mass �̃+ van-
ishes, the absence of the �+ would contradict this conclusion
�note that as Fig. 5 shows, the revival of this mass occurs

even at subcritical T�. Note also that in the case of spin-down

quasiparticles, the triplet parameters �̃− and �̃− are identi-
cally zero but the singlet mass �− remains nonzero at all
temperatures.

These results are obtained in the mean-field approxima-
tion and for the Hamiltonian Htot 	Eq. �10�
, which is sym-
metric under the U�2�+
U�2�−. However, as was already
pointed out in Sec. II B above, this symmetry is not exact for
the Hamiltonian on the graphene lattice. In that case, it is
replaced by U�1�+
Z2+
U�1�−
Z2−, where the elements
of the discrete group Z2� are 	5 � P�+ I4 � P� and the unit
matrix. It is important that unlike a spontaneous breakdown
of continuous symmetries, a spontaneous breakdown of the

discrete symmetry Z2�, with the order parameters ��̄P��
and ��†	3	5P��, is not forbidden by the Mermin-Wagner
theorem47 at finite temperatures in a planar system. This
point strongly suggests that there exists a genuine phase
transition in temperature related to the �=1 state in
graphene.

E. Plateau �=2

At zero temperature, the S2 solution 	Eq. �38�
 with equal
singlet Dirac masses for spin-up and spin-down states is
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FIG. 5. �Color online� Order parameters for solution H1 as functions of the electron chemical potential �0 for several different values of
temperature.
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most favorable for �06A+Z. It is easy to check from Eq.
�18� that both �+ and �− are negative in this case, i.e., the
LLL is completely filled. This solution corresponds to the
�=2 plateau when the value of the electron chemical poten-
tial is in the gap between the LLL and the n=1 LL.

The nonzero-temperature results for the order parameters
of solution S2 versus the electron chemical potential �0 are
shown in Fig. 4. At T=0 this solution is the ground state for
�0�0.24�B. As we see, even at high temperatures, the MC
order parameters satisfy the same approximate relation, �+
��−. Such a configuration breaks neither spin nor
sublattice-valley symmetry of graphene.

F. Metastable solutions on LLL

As was already pointed above, in addition to the three
stable solutions S1, H1, and S2, describing the �=0, �
=�1, and �=�2 QH plateaus, the numerical analysis of the
gap equations reveals other, metastable, solutions. One of
such solutions is the T solution with nonzero triplet Dirac
masses for both spin-up and spin-down quasiparticles. In the
model of graphene used in this paper, the explicit analytical
form of this solution is given in Eq. �B33�. Note that because
there is a contribution of the bare Zeeman term Z eB in the
gap �E1 for this solution, the corresponding activation en-
ergy in the �=1 state scales with eB differently from the
��eB� law in the hybrid H1 solution.

In addition to the triplet solution, there exist also meta-
stable hybrid �H2� and singlet �S3� solutions. Their free-
energy densities are shown in Fig. 2 together with the energy
densities of the other solutions. As seen, neither the H2 so-
lution nor the S3 one can have sufficiently low free-energy
density to become the genuine ground state.

The following remark is in order. Unlike all the other
solutions, solutions H2 and S3 cannot be found analytically
at T=0 �see Appendix B�. By making use of the numerical
analysis, we find that these two extra solutions are such that
�s

�����E0s
�. At exactly zero temperature, it is problematic

to get such solutions analytically because Eqs. �19�–�22�
contain undetermined values of the step functions, e.g.,
����s

����−E0s
��. In contrast, at a nonzero temperature, the step

functions are replaced by smooth expressions 	see Eqs. �29�
and �30�
 and numerical solutions with �s

�����E0s
� are eas-

ily found. The order parameters for solutions H2 and S3 are
shown in Fig. 6.

V. DYNAMICS ON n=1 LL

In Sec. IV, we analyzed solutions of the gap equations
under the condition that only states on the LLL can be filled,
��s��̃s���B=�2��eB��vF

2 /c. Since all the dynamically
generated parameters are much less than �B, this condition
implies that the bare chemical potential �0 also has to satisfy
a similar inequality, �0��B. In this section, we extend the
analysis by considering the dynamics with �0 being of the
order of the Landau scale �B, i.e., we study the regime when
quasiparticle states on the first Landau level, n=1 LL, can be
filled.

A. Analytic solutions at T=0

We will start from the gap equations at zero temperature,
which are given in Eqs. �19�–�22� in Sec. III. In order to get
their solutions for �0��B, we will follow the same steps of
the analysis as in Appendix B for the LLL. The correspond-
ing analysis for the n=1 LL, including the calculation of the
free-energy density for the solutions, is done in Appendix D.
It is shown there that the following five stable solutions are
realized �see the end of Appendix D 3�:

�f-i� The singlet-type solution �f-I–f-I� �here “f” stands for
first; the nomenclature used for the n=1 LL solutions is de-
fined in Appendix D�,

�̃+ = �̃+ = 0, �+ = �̄+ − 7A, �+ = − s�M ,

�̃− = �̃− = 0, �− = �̄− − 7A, �− = − s�M , �46�

coincides with solution S2 given by Eq. �38� considered in
the analysis of the LLL. It takes place for 6A+Z��0�7A
+��B

2 +M2−Z, and its free-energy density is

� = −
�eB��
2��c

�M + 2�0 − 7A + h� , �47�

where h is given in Eq. �B56�. According to Sec. IV E, this
solution corresponds to the regime with the filled LLL and
the empty n=1 LL and is connected with the �=2 plateau.

�f-ii� The hybrid type solution �f-I–f-II�,

�̃+ = �̃+ = 0, �+ = �̄+ − 11A, �+ = − s�M ,

��

�
�
�

��

Μ�

Μ� �

Μ�

0.00 0.01 0.02 0.03 0.04
�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

Μ0�ΕB

�
�
�M

,Μ
�
�M

,�
� �
�M

,Μ
� �
�M

Solution H2, T�1 K

��

��

Μ�

Μ�

0.00 0.05 0.10 0.15 0.20
�1.0

�0.8

�0.6

�0.4

�0.2

0.0

Μ0�ΕB

�
�
�M

,Μ
�
�M

Solution S3, T�1 K

(a)

(b)

FIG. 6. �Color online� Nontrivial order parameters of metastable
solutions H2 �top panel� and S3 �bottom panel� as functions of the
electron chemical potential �0. In calculation, the temperature is
taken nonzero but small, T=1 K. The values of the electron chemi-
cal potential are given in units of the Landau energy scale �B, while
the order parameters are given in units of the dynamical scale M.
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�̃− =
M − M1

2
, �̃− = − As�, �− = �̄− − 10A , �48�

�− = − s�

M + M1

2
,

with M1 given in Eq. �D5�, takes place for 9A+��B
2 +M1

2

−Z��0�11A+��B
2 +M2−Z, and its free-energy density is

� = −
�eB��
2��c

�3M + M1

4
+ 3�0 − 15A − �B + Z +

3h + h1

4
� ,

�49�

where h1 is given in Eq. �D22�. As is shown in Sec. V B
below, this solution corresponds to the �=3 plateau.

�f-iii� The singlet-type solution �f-I–f-III�,

�̃+ = �̃+ = 0, �+ = �̄+ − 15A, �+ = − s�M ,

�̃− = �̃− = 0, �− = �̄− − 13A, �− = − s�M1, �50�

is realized for 13A+��B
2 +M1

2−Z��0�15A+��B
2 +M2+Z,

and its free-energy density is

� = −
�eB��
2��c

�M + M1

2
+ 4�0 − 27A − 2�B + 2Z +

h + h1

2
� .

�51�

As is discussed in Sec. V B, this solution corresponds to the
�=4 plateau.

�f-iv� The hybrid type solution �f-II–f-III�,

�̃+ =
M − M1

2
, �̃+ = − As�, �+ = �̄+ − 18A ,

�+ = − s�

M + M1

2
,

�̃− = �̃− = 0, �− = �̄− − 17A, �− = − s�M1, �52�

takes place for 17A+��B
2 +M1

2+Z��0�19A+��B
2 +M2+Z,

and its free-energy density is

� = −
�eB��
2��c

�3M1 + M

4
+ 5�0 − 43A − 3�B + Z +

3h1 + h

4
� .

�53�

This solution corresponds to the �=5 plateau �see Sec. V B�.
�f-v� The singlet-type solution �f-III–f-III�,

�̃+ = �̃+ = 0, �+ = �̄+ − 21A, �+ = − s�M1,

�̃− = �̃− = 0, �− = �̄− − 21A, �− = − s�M1, �54�

is realized for �021A+��B
2 +M1

2+Z, and its free-energy
density is

� = −
�eB��
2��c

�M1 + 6�0 − 63A − 4�B + h1� . �55�

This solution corresponds to the �=6 plateau connected with
the gap between the filled n=1 LL and the empty n=2 LL.

It should be emphasized that the above analytical solu-
tions do not cover the whole range of the values of the elec-
tron chemical potential around the n=1 LL. In particular,
there are no analytical solutions found in the following four
intervals:

7A + ��B
2 + M2 − Z��0 � 9A + ��B

2 + M1
2 − Z , �56�

11A + ��B
2 + M2 − Z��0 � 13A + ��B

2 + M1
2 − Z , �57�

15A + ��B
2 + M2 + Z��0 � 17A + ��B

2 + M1
2 + Z , �58�

19A + ��B
2 + M2 + Z��0 � 21A + ��B

2 + M1
2 + Z . �59�

The difficulty in finding analytical solutions at T=0 on these
intervals is related to the ambiguities in the definition of
some step functions in Eqs. �19�–�22�. The same problem,
albeit in a weaker form, was also encountered in the analysis
of dynamics at the LLL �see Sec. IV F�. As in that case,
we remove the ambiguities by considering a nonzero-
temperature case. The results at T=0 can then be obtained by
taking the limit T→0. The details of our numerical analysis
are given in Sec. V B.

B. Numerical analysis at n=1 LL

By performing a nonzero-temperature analysis numeri-
cally, we find that solutions �f-i�, �f-iii�, and �f-v�, found ana-
lytically, are in fact continuously connected. They are parts
of a more general solution S �here S stands for singlet� that
exists at all values of �0. At small and intermediate values of
�0, this solution includes solutions S1 and S2 �see Fig. 4�. At
larger values of �0, relevant for the dynamics of n=1 LL,
solution S is shown in Fig. 7.

As seen in Fig. 7, solution S consists of five pieces de-
fined on five adjacent intervals of �0. Three of them are the
analytical solutions �f-i�, �f-iii�, and �f-v�, as defined in Sec.
V A. Their intervals of existence are �0 /�B�1.27, 1.5
��0 /�B�1.6, and �0 /�B�1.83, respectively. These inter-
vals are in agreement with the analytical results if one takes
M1�111 K, or in terms of the Landau energy scale, M1
=4.42
10−2�B. The other two pieces of solution S extend
the singlet-type analytical solution to the intermediate inter-
vals.

At T=0 solution S describes the ground state in exactly
the same regions of validity that are found analytically for
solutions �f-i�, �f-iii�, and �f-v� in Sec. V A. This can be
concluded from the energy consideration: among all numeri-
cal solutions the parts of solution S have the lowest free-
energy density there. Analyzing the quasiparticle spectra by
using the dispersion relation in Eq. �17�, we find that solu-
tions �f-i�, �f-iii�, and �f-v� describe the �=2, �=4, and
�=6 QH states, respectively.

From the symmetry viewpoint, none of the three parts of
the singlet solution breaks any exact symmetries in the
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model. However, part �f-iii� of the solution, describing the
�=4 QH state, corresponds to a quasispontaneous break-
down of the U�4� symmetry down to the U�2�+
U�2�−. In-
deed, by using Eq. �17�, one can check that the LLL is half
filled and the energy gap between the pairs of the pseudospin
degenerate spin-up and spin-down states of the n=1 LL is
given by �E4�2�Z+A�+ �M2−M1

2� /2�B. As we see, the spin
splitting by the Zeeman term 2Z is strongly enhanced by the
dynamical contribution 2A.

This is somewhat similar to the enhancement of the spin
splitting in the �=0 QH state, discussed in Sec. IV C. How-
ever, there is an important qualitative difference between the
cases of the LLL and the n=1 LL: it is only the dynamical
contribution to the chemical potentials �but not the Dirac
masses� that substantially affects the splitting in the �=4 QH
state. Indeed, the dynamical contribution due to the Dirac
masses in the gap �E4, i.e., �M2−M1

2� /2�B, is very small
because M �M1��B. As a result, the gap �E4 is substan-
tially smaller than the LLL spin gap �E0 ��E4��E0 /2�.

Because of having nonvanishing triplet order parameters
in the extended hybrid solutions �f-ii� and �f-iv�, the flavor
U�2�+
U�2�− symmetry of graphene is partially broken in
the corresponding ground states. By using dispersion relation
�17� in the analysis of the quasiparticle spectra, we find that
these solutions describe the �=3 and �=5 plateaus corre-
sponding to the quarter and three-quarter filled n=1 LLs,
respectively. In the case of the extended solution �f-ii�, the
spin-down flavor subgroup SU�2�−�U�2�− is broken down
to U�1�−, while the spin-up flavor subgroup U�2�+ is intact.
Similarly, in the case of the extended solution �f-iv�, the
spin-up flavor subgroup SU�2�+�U�2�+ is broken down to
U�1�+, while the spin-down flavor subgroup U�2�− is intact.
Up to small corrections due nonzero Dirac masses, the en-

ergy gaps �E3 and �E5 associated with the �f-ii� and �f-iv�
solutions are equal to 2A. Note that these gaps are substan-
tially smaller than the LLL gap �E1 ��E3 ,�E5��E1 /2�.

The analytical hybrid solutions �f-ii� and �f-iv� get con-
tinuous extensions to the left and to the right from their
regions of validity found analytically in Sec. V A. In fact,
they extend all the way to cover the neighboring “forbidden”
regions defined in Eqs. �56�–�59�. The first two forbidden
intervals are covered by the extension of solution �f-ii� to the
interval 7A+��B

2 +M2−Z��0�13A+��B
2 +M1

2−Z. The non-
trivial Dirac masses and chemical potentials for this numeri-
cal solution are shown in Fig. 8. The last two forbidden
intervals 	see Eqs. �58� and �59�
 are covered by the exten-
sion of solution �f-iv� to the interval 15A+��B

2 +M2+Z
��0�21A+��B

2 +M1
2+Z. The nontrivial parameters for this

solution are shown in Fig. 9.
In fact, extended solutions �f-ii� and �f-iv� are the ground

states in their whole regions of existence. This is seen in Fig.
10, where we plot the difference between the free-energy
density of the hybrid type solutions and the singlet one. The
results for the extended hybrid solutions �f-ii� and �f-iv� are
shown by the solid line and the long-dashed line, respec-
tively.

In Fig. 10 we also show the results for another hybrid
solution that was found numerically. It exists in the interval
of �0 that could potentially be relevant for the �=4 QH state.
However, its free-energy density is higher than that for solu-
tion S, and therefore it is unstable.

With increasing the temperature, we find that the extended
hybrid solutions �f-ii� and �f-iv� responsible for the �=3 and
�=5 QH states gradually vanish. Their regions of existence
shrink and their free-energy densities approach the free-
energy density of the singlet solution S. At temperatures
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FIG. 7. �Color online� Nontrivial order parameters of the S-type
numerical solution that contains the analytical solutions �f-i�, �f-iii�,
and �f-v� as parts, connected by two intermediate solutions.
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FIG. 8. �Color online� Nontrivial order parameters of the ex-
tended hybrid solution �f-ii� which determines the ground state for
the �=3 QH plateau in graphene.
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above Tcr
��=3��Tcr

��=5��0.4M �Tcr
��=1� /2, they cease to exist

altogether, and the ground state is described by the singlet
solution which does not break any exact symmetries of the
model.

VI. DISCUSSION: PHASE DIAGRAM, EXPERIMENT,
DISORDER, AND EDGE STATES

By summarizing the numerical results for the ground
states at different temperatures, we obtain the phase diagram
of graphene in the plane of temperature T and electron
chemical potential �0 shown in Fig. 11. The areas high-
lighted in green correspond to hybrid solutions with a low-
ered symmetry in the ground state. These regions are sepa-

rated from the rest of the diagram by phase transitions. At the
boundary of the �=1 region, the transition is of first order at
low temperatures and of second order at higher temperatures.
The transitions to/from the QH �=3 and �=5 states are of
second order. It should be kept in mind, however, that here
the analysis is done in the mean-field approximation and in a
model with a simplified contact interaction. Therefore, the
predicted types of the phase transitions may not be reliable.
In particular, the contributions of collective excitations,
which are beyond the mean-field approximation, may change
the transitions to first-order type. Also, the types of the tran-
sitions may be affected by the inclusion of disorder and a
more realistic long-range Coulomb interaction. Despite the
model limitations, we still expect that Fig. 11 correctly rep-
resents the key qualitative features of the phase diagram of
graphene at least in the case of the highest quality samples.

In Fig. 11 the regions highlighted in blue correspond to
the ground states with a quasispontaneous breakdown of the
spin symmetry. In the case of the LLL and the n=1 LL, such
are the �=0 and �=4 QH states, in which the quasisponta-
neous breakdown of the approximate U�4� symmetry down
to U�2�+
U�2�− is enhanced by dynamical contributions.
Because of the explicit breakdown by the Zeeman term,
there is no well-defined order parameter associated with this
symmetry breakdown. Also, there is no well-defined bound-
ary of the corresponding regions in the diagram. In the plot,
this feature is represented by the fading shades of blue at the
approximate boundaries of the �=0 and �=4 regions.

As considered in detail in Sec. IV, the physical properties
of the �=0 and �=1 QH states are determined by the dynam-
ics of the LLL. The corresponding values of the gaps, �E0
=2�Z+A+M� and �E1=2�A+M�, are largely determined by
the dynamical contributions A and M of about equal magni-
tude. These two contributions are associated with the QHF
and MC order parameters, respectively.

The results of this study for the LLL at least qualitatively
agree with the experimental data.13,14 By taking the dimen-
sionless coupling �=4A� / ����B

2� to be a free parameter and
utilizing the cutoff � to be of the order of the Landau scale
�B, we arrive at the following scaling relations: A
����eB�� and M ����eB��. This implies the same type of
scaling for the gap, �E1=2�A+M�����eB��, associated
with the �=�1 plateaus. �Recently, the square-root scaling
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FIG. 9. �Color online� Nontrivial order parameters of the ex-
tended hybrid solution �f-iv� which determines the ground state for
the �=5 QH plateau in graphene.
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FIG. 10. �Color online� The difference between the free-energy
density of three hybrid-type solutions and the free-energy density of
the S-type solution in the range of �0, associated with the dynamics
of the n=1 LL. In calculations, the temperature is taken nonzero but
small, T=1 K. The values of the free-energy density and the elec-
tron chemical potential are given in the same units as in Fig 2.

FIG. 11. �Color online� Schematic phase diagram of graphene in
the plane of temperature and electron chemical potential. The val-
ues of chemical potential are given in units of the Landau energy
scale �B, and the values of temperature are given in units of the
dynamical scale M.
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of the activation energy in the �=1 QH state was also ob-
tained in the large-N approximation in Ref. 52.� By making
use of our results, we find that the experimental value �E1

�100 K for B�=30 T from Ref. 14 corresponds to �
�0.02. This estimate, however, should be taken with great
caution; because interactions with impurities are ignored and
no disorder of any type is accounted for in the present model,
it may not be unreasonable to assume that actual values of �
are up to an order of magnitude larger.

As to the n=1 LL, we found that there are the gaps
�E3=�E5�2A and �E4�2�Z+A� corresponding to the pla-
teaus �=3,5 and �=4, respectively 	the contributions of
Dirac masses are suppressed by a factor of order �M /�B�2

there
. Therefore the gaps �E3=�E5 and �E4 are mostly due
to the QHF-type order parameters and are about a factor of 2
smaller than the LLL gaps �E1 and �E0, respectively. On the
other hand, the experimental data yield �E4�2Z, and no
gaps �E3 and �E5 have been observed.13,14 We believe that a
probable explanation of this discrepancy is that, unlike Z, the
value of the dynamically generated parameter A correspond-
ing to the �n��1 LLs will be strongly reduced if a consider-
able broadening of higher LLs in a magnetic field is taken
into account.21 If so, the gap �E4 will be reduced to 2Z,
while the gaps �E3 and �E5 will become unobservable.

In order to estimate the value of a magnetic field at which
the plateaus �=3 and 5 could become observable, one can
use the following arguments. Recently, in Ref. 33, a large
width !1 of 400 K was determined for the n=1 LL. On the
other hand, the plateaus �=3,5 could become observable if
the gaps �E3=�E5�2A calculated in the clean limit are at
least of order !1 or larger.21 The LLL gap �E1�100 K at
�B��=30 T corresponds to �E3,5�50 K. Then, taking a
conservative estimate !1=100 K and using A���eB��, we
conclude that to observe the �=3,5 plateaus, the magnetic
fields should be at least as large as B�100 T.

Here it is also appropriate to mention the dynamics of
gapless edge states, whose importance for the physics of the
�=0 plateau has been recently discussed in Refs. 20, 36, and
37. Generalizing the analysis in Ref. 36, it has been recently
found49,50 that for the S1 solution 	Eq. �36�
 with the zigzag
boundary conditions, such states exist only when the full
Zeeman energy ��+−�−� /2=Z+A is larger than the Dirac
mass ��=M �at an armchair edge, gapless edge states exist
for any value of a singlet Dirac mass�. Because of that, for �
smaller than 1, we find from the constraint Z�A / �1−�� in
solution �i� and Eq. �23� with ���B that the gapless edge
states exist when �B��B�

�cr��8
104�4 / �1−��2 T. Then,
for the values of the dimensionless coupling � in the range
0.02���0.2, we find that 0.01 T�B�

�cr��200 T. As we
see, B�

�cr� is very sensitive to the choice of �. Therefore, in
order to fix the critical value B�

�cr� more accurately, one
should first utilize more realistic models of graphene that
incorporate disorder among other things.31,32 This is a topic
for future studies however.

These results are of interest in connection with the inter-
pretation of the �=0 Hall plateau. Indeed, the gapless edge
states should play an important role in transport properties of

graphene in a strong magnetic field. Their presence is ex-
pected to make graphene a so-called quantum Hall metal,
while their absence should make it an insulator.20,36 The ac-
tual temperature dependence of the longitudinal resistivity at
the �=0 plateau in Refs. 13 and 36 is consistent with the
metal type. This conclusion may be disputed in view of the
recent data from Ref. 37 that reveal a clear plateau at �=0,
but the temperature dependence of the diagonal component
of the resistivity signals a crossover to an insulating state in
high fields. The latter observations do not seem to support
the existence of gapless edge states.

The analysis in this paper as well as in Refs. 49 and 50
suggests that the conditions for the existence and absence of
gapless edge states depend sensitively on the type of the
boundary conditions and the values of QHF and MC order
parameters that characterize the nature of the corresponding
QH state. Therefore, the dynamics of the edge states is very
likely to be rich and full of surprises.

In conclusion, we have shown that the QHF and MC or-
der parameters in graphene are two sides of the same coin
and they necessarily coexist. This feature could have impor-
tant consequences for the QH dynamics, in particular, for
edge states. The present model leads to a reasonable and
consistent description of the QH plateaus in graphene in
strong magnetic fields. It would be desirable to extend the
present analysis to a more realistic model setup, including
the Coulomb interaction between quasiparticles, the quasi-
particle width, and various types of disorder.
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APPENDIX A: QUASIPARTICLE PROPAGATOR AND THE
GAP EQUATION

1. Quasiparticle propagator: Expansion over LLs

In this appendix, the units with �=1 and c=1 are used.
The full propagator Gs�u ,u�� that corresponds to the inverse
propagator in Eq. �13� is given by the following expression:
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Gs�u,u�� = i�u�	�i�t + �s�	0 − vF�� · �� + i�̃s	
1	2 + i�s	

0	1	2 − �̃s
−1�u�

= i�u�	�i�t + �s�	0 − vF�� · �� + i�̃s	
1	2 − i�s	

0	1	2 + �̃s



�	�i�t + �s�	0 − vF�� · �� + i�̃s	
1	2 + i�s	

0	1	2 − �̃s
	�i�t + �s�	0 − vF�� · �� + i�̃s	
1	2 − i�s	

0	1	2 + �̃s
�−1�u�

= i�u�	�i�t + �s�	0 − vF�� · �� + i�̃s	
1	2 − i�s	

0	1	2 + �̃s



	�i�t + �s�2 − vF
2�2 + 2i�̃s�i�t + �s�	0	1	2 + 2i�s�̃s	

0	1	2 − ieB�vF
2	1	2 + �̃s

2 − �̃s
2 − �s

2
−1�u� , �A1�

where u= �t ,r� and r= �x ,y�. Our aim is to get an expression
for this propagator as an expansion over LLs. For the Fourier
transform in time we need to calculate

Gs��;r,r��

= i	W − vF��r · ��
�r��M − vF
2�2 − ieB�vF

2	1	2�−1�r� ,

�A2�

where the matrices W and M are

W = �� + �s�	0 + i�̃s	
1	2 − i�s	

0	1	2 + �̃s, �A3�

M = �� + �s + i�̃s	
0	1	2�2 − ��̃s − i�s	

0	1	2�2. �A4�

The operator �2 has well-known eigenvalues �2n+1��eB��,
with n=0,1 ,2 ,¯, and its normalized wave functions in the
Landau gauge A= �0,B�x� are

�np�r� =
1

�2�l

1

�2nn ! ��
Hn� x

l
+ pl�e−�1/2l2��x + pl2�2

eipy ,

�A5�

where Hn�x� are the Hermite polynomials and l=��c / �eB��
is the magnetic length. These wave functions satisfy the con-
ditions of normalizability,

� d2r�np
� �r��n�p��r� = �nn���p − p�� , �A6�

and completeness,

�
n=0

� �
−�

�

dp�np
� �r��np�r�� = ��r − r�� . �A7�

Using the spectral expansion of the unit operator �A7�, we
can write

�r��M − vF
2�2 − ieB�vF

2	1	2�−1�r�

=
1

2�l2exp�−
�r − r��2

4l2 − i
�x + x���y − y��

2l2 �

 �

n=0

�
1

M − �2n + 1�vF
2 �eB�� − ivF

2eB�	
1	2


Ln� �r − r��2

2l2 � , �A8�

where we integrated over the quantum number p by making
use of the formula 7.378 of Ref. 53,

�
−�

�

e−x2
Hm�x + y�Hn�x + z�dx = 2n�1/2m ! zn−mLm

n−m�− 2yz� ,

�A9�

assuming m�n. Here Ln
� are the generalized Laguerre poly-

nomials, and Ln�Ln
0. The matrix ivF

2eB�	
1	2 has eigenval-

ues �vF
2 �eB��, and thus one can write

Ln�"�
M − �2n + 1�vF

2 �eB�� − ivF
2eB�	

1	2

=
P−Ln�"�

M − �2n + 1�vF
2 �eB�� + vF

2 �eB��

+
P+Ln�"�

M − �2n + 1�vF
2 �eB�� − vF

2 �eB��
, �A10�

where the variable " and the projectors P� are

" =
�r − r��2

2l2 , �A11�

P� =
1

2
	1� i	1	2 sgn�eB��
 . �A12�

Now, by redefining n→n−1 in the second term in Eq. �A10�,
equality �A8� can be rewritten as

�r�	M − vF
2�2 − ieB�vF

2	1	2
−1�r�

=
1

2�l2ei#�r,r��e−"/2�
n=0

� P−Ln�"� + P+Ln−1�"�

M − 2nvF
2 �eB��

,

�A13�

where L−1�0 by definition and the phase

#�r,r�� = −
�x + x���y − y��

2l2 = − e�
r�

r

dziAi�z� �A14�

appears because in the presence of a constant magnetic field,
the commutative group of translations is replaced by the non-
commutative group of magnetic translations54 	note that the
integration in Eq. �A14� is taken along the straight line
. This
implies that it has a universal character. By noting that
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�xe
i# = ei#�− i�x −

y − y�

2l2 � , �A15�

�ye
i# = ei#�− i�y +

x − x�

2l2 � , �A16�

we see that propagator �A2� can be presented in the form of
a product of the phase factor and a translation invariant part

Ḡs�� ;r−r��,

Gs��;r,r�� = ei#�r,r��Ḡs��;r − r�� , �A17�

where

Ḡs��;r − r�� = i�W − vF	
1�− i�x −

y − y�

2l2 �
− vF	

2�− i�y +
x − x�

2l2 �� e−"/2

2�l2


�
n=0

� P−Ln�"� + P+Ln−1�"�

M − 2nvF
2 �eB��

. �A18�

It is important to emphasize that the phase factor does not
affect Eq. �5� because the latter contains the full propagator
only at u�=u.

The Fourier transform of the translation invariant part of
propagator �A18� can be evaluated by first performing the
integration over the angle,

�
0

2�

d�eikr cos � = 2�J0�kr� , �A19�

where J0�x� is the Bessel function, and then using the for-
mula 7.421.1 of Ref. 53,

�
0

�

xe−1/2�x2
Ln�1

2
$x2�J0�xy�dx

=
�� − $�n

�n+1 e−1/2�y2
Ln� $y2

2��$ − ��� , �A20�

valid for y0 and Re �0. The result is given by

Ḡs��,k� = ie−k2l2�
n=0

�
�− 1�nDns��,k�
M − 2nvF

2 �eB��
, �A21�

with

Dns��,k� = 2W	P−Ln�2k2l2� − P+Ln−1�2k2l2�


+ 4vF�k · ��Ln−1
1 �2k2l2�, L−1

� � 0,

�A22�

describing the nth Landau-level contribution �compare to
corresponding expression for the standard Dirac propagator
in Ref. 28�.

2. Equations for Dirac masses and chemical potentials

In order to derive Eqs. �19�–�22� for masses and chemical
potentials, we need to know the full propagator at u�=u,

Gs�u ,u�� �u=u�= Ḡs�u ,u�. As follows from Eq. �A18�, it is

Gs�u,u� = �
−�

� d�

2�
Ḡs��,0�

=
i

2�l2 �
n=0

� �
−�

� d�

2�
W

P− + P+��n − 1�

M − 2nvF
2 �eB��

. �A23�

In what follows, it is convenient to work with eigenvectors
of the matrices 	1	2 and 	0. Since �	1	2�2=−1, the eigen-
vectors �s12 of the matrix 	1	2 correspond to imaginary ei-
genvalues is12=� i, i.e.,

	1	2�s12 = is12�s12 . �A24�

Similarly, since �	0�2=1, the eigenvectors �s0 of the matrix
	0 correspond to eigenvalues s0=�1, i.e.,

	0�s0 = s0�s0 . �A25�

Because 	0 and 	1	2 commute, we can use states �s12s0
which are simultaneously eigenvectors of 	1	2 and 	0 with
eigenvalues is12 and s0, respectively. The vectors �s12s0 form
a complete basis. Therefore, any 4
4 matrix O can be rep-
resented as

O = �
s12� ,s0�,s12,s0

Os12� s0�s12s0
�s12� s0��s12s0� . �A26�

Now, taking into account that propagator �A23� contains
only the unit, 	0, 	1	2, and 	0	1	2 matrices 	see Eqs. �A3�
and �A4�
, its expansion in form �A26� has only diagonal
terms with s12� =s12 and s0�=s0. Therefore, we can rewrite it as
follows:

Gs�u,u� =
i

4�l2 �
s12,s0

�
−�

� d�

2��
n=0

�
�� + �s − �̃ss12s0�s0 + �̃s + �ss12s0

�� + �s − �̃ss12s0�2 − ��̃s + �ss12s0�2 − 2vF
2 �eB��n


�1 + s12 sgn�eB�� + 	1 − s12 sgn�eB��
��n − 1���s12s0�s12s0� . �A27�

The zeros in the denominator in the integrand define the dispersion relations for the Landau levels. In the case of n�1, they
are given by
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�ns
��� = − �s + ��̃s �

�2vF
2 �eB��n + ��̃s + ��s�2,

�A28�

where ��s12s0 �i.e., �=�1� and the two signs in front of
the square root correspond to the energy levels above and
below the Dirac point. The case of the LLL is special be-
cause the numerator in the n=0 term in Eq. �A27� coincides
with one of the zeros in the denominator. After taking this
into account, we find the following dispersion relation:

�s
��� = − �s + �	�̃s sgn�eB�� + �̃s
 + �s sgn�eB�� .

�A29�

Note that the parameter �=�1 in Eqs. �A28� and �A29� is
connected with the eigenvalues of the diagonal pseudospin
matrix 	3	5 in Eq. �9�. Indeed, from the expression 	5

= i	0	1	2	3, one gets 	3	5= i	0	1	2, i.e., the eigenvalues of
	3	5 are −s0s12. It is now easy to check for higher LLs that
�=�1 in Eq. �A28� corresponds to the eigenvalues �1 of
	3	5. On the other hand, as follows from Eq. �A21�, s12

=sgn�eB�� on the LLL, and we find that in this case �
=�1 corresponds to sgn�eB��
 ��1�, with �1 being the
eigenvalues of 	3	5.

Integrating over � in Eq. �A27�, we obtain

Gs�u,u� =
1

8�l2 �
s12,s0

�
n=0

�


�− s0 sgn��s − �̃ss12s0�����s − �̃ss12s0� − Ens
� �

+
��̃s + �ss12s0���Ens

� − ��s − �̃ss12s0��
Ens
� �


 �1 + s12 sgn�eB�� + 	1 − s12 sgn�eB��
��n − 1��


�s12s0�s12s0� , �A30�

where Ens
� =�2vF

2 �eB��n+ ��̃s+��s�2. Using this expression
and the inverse bare and full propagators in Eqs. �4� and
�13�, we arrive at the following form of gap Eq. �5�:

− �ss0 + �̃ss12 + �ss12s0 + �̃s = − �̄ss0 + A�
n=0

�

�1 + s12 sgn�eB�� + 	1 − s12 sgn�eB��
��n − 1��


 �− s0 sgn��s − �̃ss12s0�����s − �̃ss12s0� − Ens
� � +

��̃s + �s12s0���Ens
� − ��s − �̃ss12s0��

Ens
� �

− As0�
n=0

�

�
s�=�

�
s12� ,s0�

�1 + s12� sgn�eB�� + 	1 − s12� sgn�eB��
��n − 1��


 �− s0� sgn��s� − �̃s�s12� s0������s� − �̃s�s12� s0�� − Ens�
� �

+
��̃s� + �s�s12� s0����Ens�

� − ��s� − �̃s�s12� s0���

Ens�
� � , �A31�

where A�Gint / �8�l2�. The last term on the right-hand side
of Eq. �A31� proportional to s0 is the Hartree contribution.
Finally, multiplying Eq. �A31� by 1, s12s0, s12, and s0, respec-
tively, and taking the sum over s12 and s0, we obtain Eqs.
�19�–�22�.

APPENDIX B: ANALYTIC SOLUTIONS OF GAP
EQUATION FOR LLL AT T=0

In order to solve Eqs. �19�–�21� for �s, �̃s, and �̃s as
functions of �s, note that these equations contain � functions
whose arguments suggest that the following three cases have
to be considered:

1 . ��s � �̃s�� ��̃s ��s�;

2 . ��s − �̃s� ��̃s + �s�, ��s + �̃s�� ��̃s − �s� or

��s − �̃s�� ��̃s + �s�, ��s + �̃s� ��̃s − �s�;

3 . ��s � �̃s� ��̃s ��s� .

1. First case

For ��s��̃s�� ��̃s��s�, the gap equations for Dirac
masses take the form
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�̃s + �s = A�
n=0

�
�̃s + �s

Ens
+ 	1 + ��n − 1�
 , �B1�

�̃s − �s = A�
n=0

�
�̃s − �s

Ens
− 	1 + ��n − 1�
 . �B2�

Equations for �̃s+�s and �̃s−�s are equivalent and since
each equation admits both positive and negative solutions
with the same absolute value, we have

�̃s + �s = � ��̃s − �s� . �B3�

This implies that one of the following should be true:

�a� �s = 0 or �b� �̃s = 0. �B4�

Then, the gap equation for the nonvanishing parameter �̃s �or
�s� takes the form

�̃s = A�
n=0

�
�̃s

�n�B
2 + �̃s

2
	1 + ��n − 1�
 . �B5�

Let us first consider case �a� and show that Eq. �B5� can be
equivalently represented in the following integral form:

�̃s =
A�̃s

�� �1/�2

� dy
�y

e−y�̃s
2

coth� �B
2

2
y� , �B6�

where � is a high-energy cutoff up to which the low-energy
effective theory is valid. After taking into account the iden-

tity coth��B
2y /2�=1+2�n=1

� e−yn�B
2
, we can integrate over y in

Eq. �B6� by using the following table integral:

�
1/�2

� dy
�y

e−y�n�B
2+�̃s

2� � �
0

� dy
�y

e−y�n�B
2+�̃s

2� =
��

�n�B
2 + �̃s

2
,

�B7�

where we replaced the lower limit of integration by 0 be-
cause the integral is convergent for y→0. Therefore, up to
corrections suppressed by the inverse powers of cutoff �,
Eq. �B6� is indeed equivalent to Eq. �B5�. Then, by using the
same approach as in the second paper in Ref. 28, we expand
the result on the right-hand side of Eq. �B6� in powers of
1 /� and arrive at the following form of the gap equation:

�̃s = ��̃s + A +
2A�̃s

�B
%�1

2
,1 +

�̃s
2

�B
2 � + O�� �̃s

2

�2� , �B8�

where ��4A� / ����B
2�=Gint� / �4�3/2�2vF

2� is the dimen-
sionless coupling constant and %�z ,q� is the generalized Rie-

mann zeta function.53 By assuming that the gap �̃s is much
smaller than the Landau energy scale �B, we find the solution
in an analytical form,

�̃s = M �
A

1 − �
, �̃s = As�. �B9�

Here, in order to get the result for the chemical potential �̃s
we used Eq. �21�. It is easy to check that the gap equation

also has another solution, which is obtained from Eq. �B9�
by replacing �̃s and �̃s with −�̃s and −�̃s. However, the
second solution is equivalent to that in Eq. �B9�: one can see
this from dispersion relations �17� and �18� by transforming
�→−� there. In other words, these solutions describe two
degenerate ground states connected by a Z2s 	�SU�2�s
 sym-
metry transformation.

Turning to case �b� in Eq. �B4�, we have �̃s=0,

�s = � M, �̃s = 0, �B10�

where the last relation follows from Eq. �21�. Finally, we
would like to note that by analyzing the inequalities

��s��̃s�� ��̃s��s�, one can show that solution �B9� with a
triplet Dirac mass exists for

��s�� M − A �B11�

and solution �B10� with a singlet Dirac mass exists for

��s�� M . �B12�

2. Second case

There are two possibilities: ��s+ �̃s�� ��̃s−�s�, ��s− �̃s�
 ��̃s+�s� or ��s− �̃s�� ��̃s+�s�, ��s+ �̃s� ��̃s−�s�. In the
first case, the equations for Dirac masses take the form

�̃s + �s = − As� sgn��s − �̃s� + 2A�
n=1

�
�̃s + �s

Ens
+ , �B13�

�̃s − �s = A�
n=0

�
�̃s − �s

Ens
− 	1 + ��n − 1�
 , �B14�

where s��sgn�eB��. While the equation for �̃s−�s coin-

cides with Eq. �B2�, the equation for �̃s+�s is slightly dif-
ferent from its counterpart in Eq. �B1�. Unlike Eq. �B1�, the

above equation for �̃s+�s does not contain the sign factor

sgn��̃s+�s� in the LLL contribution. The absence of such a
factor in Eq. �B13� means that the sign of the LLL contribu-
tion is fixed for a given set of values of �s, �̃s, and eB�. In
turn, this implies that Eq. �B13� 	unlike Eq. �B1�
 has only
one solution whose sign is correlated with the sign of the
LLL contribution. In order to prove this, let us consider the
following equation:

x = − A + 2A�
n=1

�
x

�n�B
2 + x2

. �B15�

By taking x negative, we see that its absolute value �x� satis-
fies an equation that is equivalent to the equation for positive

�̃s that follows from Eq. �B5�. Therefore, the solution for �x�
coincides with the positive solution for �̃s in Eq. �B9�. We
can also show that Eq. �B15� does not have a solution for
positive x by using the integral form of �B15�, i.e.,
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1 =
A
���1/�2

� dy
�y

e−yx2�coth� �B
2

2
y� − 2� , �B16�

where the term −2 is subtracted in order to get the negative
LLL contribution as in �B15� 	cf. Eq. �B6�
.

In order to prove that Eq. �B16� does not have solution,
we will use the fact that Eq. �B6� does not have a nontrivial
solution for B�→0 in the case when the coupling constant
Gint is subcritical, i.e., Gint�4�3/2vF

2�2 /�, or equivalently
��1. Note that the coupling constant should indeed be sub-
critical because, as we know from experiment, there is no
gap generation at B�=0. It is not difficult to prove that the
right-hand side of Eq. �B16� is less than � after taking into
account that t�coth t−2��1 for t0. Then we conclude that
Eq. �B16� does not have a solution for a subcritical coupling
constant ��1. As for Eq. �B15�, it has only one solution

which, in fact, coincides with the solution for �̃s in Eq. �B9�
times −1. Thus, the solutions of Eqs. �B13� and �B14� are

�̃s + �s = − sgn��s − �̃s�s�M �B17�

and

�̃s − �s = � ��̃s + �s� . �B18�

From the fact that the solutions for �̃s+�s and �̃s−�s have

the same absolute value, we conclude that either �̃s�0, �s

=0 or vice versa �s�0, �̃s=0 depending on the sign in Eq.
�B18�. If Eq. �B16� had solution, there would exist solutions

with both nonzero �̃s and �s.
Further, solution of Eq. �21� for �̃s in the case under con-

sideration takes the form

�̃s =
A

2
	− sgn��s − �̃s� + sgn��̃s − �s�s�
 . �B19�

Using Eq. �B17�, it is easy to check that for the plus sign in

Eq. �B18� �when �̃s�0 and �s=0� �̃s=A sgn��̃s�s� and for

the sign minus in Eq. �B18� �when �̃s=0 and �s�0� �̃s=0.

In the latter case, the assumed inequalities ��s+ �̃s�� ��̃s

−�s� and ��s− �̃s� ��̃s+�s� cannot be satisfied; therefore,

only solution with triplet Dirac mass �̃s is realized,

�̃s = − s� sgn��s − �̃s�M, �s = 0, �̃s = A sgn��̃s�s�.

�B20�

In the other case ��s+ �̃s� ��̃s−�s� and ��s− �̃s�� ��̃s+�s�,
we find the following solution:

�̃s = s� sgn��s + �̃s�M, �s = 0, �̃s = A sgn��̃s�s�.

�B21�

One can show that it is possible to join solutions �B20� and
�B21� into one solution with triplet Dirac mass,

�̃s = M, �̃s = As�, �s = 0, �B22�

which exists for

M − A� ��s�� M + A . �B23�

In fact, like in Appendix B 1, there is another solution, with

�̃s, �̃s replaced by −�̃s, −�̃s. However, such a solution is
equivalent to solution �B22� by a SU�2�s �or Z2s� symmetry
transformation.

3. Third case

For ��s��̃s� ��̃s��s�, the equations for Dirac masses
take the form

�̃s + �s = − A sgn��s − �̃s�s� + 2A�
n=1

�
�̃s + �s

Ens
+ , �B24�

�̃s − �s = A sgn��s + �̃s�s� + 2A�
n=1

�
�̃s − �s

Ens
− . �B25�

Solutions of Eqs. �B24� and �B25� are

�̃s + �s = − s� sgn��s − �̃s�M , �B26�

�̃s − �s = s� sgn��s + �̃s�M . �B27�

Using these solutions and taking into account the inequalities

��s��̃s� ��̃s��s�, one can check that Eq. �21� has only the
trivial solution. Then it follows from Eqs. �B26� and �B27�
that

�s = − s� sgn��s�M, �̃s = �̃s = 0. �B28�

Taking into account the assumed inequalities ��s��̃s�
 ��̃s��s�, we find that this solution with singlet Dirac mass
exists for

��s� M . �B29�

4. Final solutions for �s, �̃s, and �̃s as functions of �s

Using the results derived above and calculating the quan-
tity Xs in Eq. �25� �which is needed for solving the equation
for �s�, we obtain the following three distinct solutions.

�i� Solution I �triplet Dirac mass�. By joining the two
solutions of the same type in Eqs. �B9� and �B22�, consid-
ered in Secs. �B1� and �B2�, respectively, we arrive at the
following solution:

�̃s = M, �̃s = As�, �s = 0, Xs = 0, �B30�

which exists over the combined range of validity ��s��M
+A. Let us mention that there is also another solution in

which �̃s and �̃s are replaced by −�̃s and −�̃s, respectively.
However, this second solution is equivalent to that in Eq.
�B30�: one can see this from dispersion relations �17� and
�18� by transforming �→−� there. In other words, the two
solutions are related to two degenerate ground states con-
nected by a SU�2�s �or Z2s� flavor transformation.

�ii� Solution II �singlet Dirac mass�. This is one of the two
solutions in Eq. �B10� that corresponds to a particular choice
of the sign for the singlet Dirac mass,
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�s = s� sgn��s�M, �̃s = �̃s = 0, Xs = 4A sgn��s� .

�B31�

It exists for ��s��M.
�iii� Solution III �singlet Dirac mass�. This combines the

remaining solution in Eq. �B10� with solution �B28� to give

�s = − s� sgn��s�M, �̃s = �̃s = 0, Xs = − 4A sgn��s� .

�B32�

This solution exists for all values of �s.
A noticeable point is that unlike the case with a triplet

Dirac mass, solutions II and III, with a different sign for a
singlet Dirac mass, are different. This in particular can be
seen from dispersion relation �18�. This feature is directly
connected with the fact that while the triplet mass is even
under time reversal T, the singlet mass is T odd. The latter is
in turn connected with the fact that � s�=sgn�B�� �recall
that a magnetic field is also T odd�.

Let us also emphasize that the expressions for Dirac
masses in solutions I–III are valid only for ��1: in the

supercritical regime, with �1, a Dirac mass �̃ is generated
even with no magnetic field.28 Experiments clearly show that
the subcritical regime, with ��1, takes place in graphene.2,3

As argued in Sec. IV in the main text, realistic values for � in
this model are ��0.2.

5. Including both spin-up and spin-down states

In Appendix B 4, the solutions for masses and chemical
potentials were found for a fixed spin, treating the electron
chemical potential �s as a free parameter. Here we will de-
scribe full solutions, including both spin-up and spin-down
states. For this purpose, we need to solve Eq. �22� for the
chemical potentials ��. Since the X term in that equation
contains both spin-up and spin-down contributions, the equa-
tions for �+ and �− are now coupled and have to be solved
together. As a result, the full chemical potentials �� will be
expressed through the bare electron chemical potentials �̄�
=�0�Z.

At a fixed spin, there are three different types of solutions
for masses and �̃s described in Appendix B 4. Since we can
choose any of them for each spin, there are nine possible
types and, therefore, nine systems of coupled equations for
�+ and �−. Fortunately, noting that the solutions for the types
II-I, III-I, and III-II can be obtained from those for I-II, I-III,
and II-III by interchanging the spin subscripts + and − in the
latter, this number can be reduced to six coupled systems. We
will analyze them below case by case.

It will be convenient to separate these systems of equa-
tions into three groups. The first group includes one system,

I-I. This is the simplest case with triplet masses �̃� for both
spins when the Hartree diagram does not contribute in the
equations for ��. The second group consists of hybrid sys-
tems I-II and I-III, where while fields with spin up have a

triplet mass �̃+, the fields with spin down have a singlet mass
�−. The third group, II-II, II-III, and III-III, consists of solu-
tions with singlet masses �� only.

In the analysis, it will be assumed that the Zeeman energy
Z�A. As argued in Sec. IV, this assumption is valid for
magnetic fields �B���45 T used in experiments.13,14

�i� First group: Triplet Dirac masses.
�I-I�. In this simplest case, using Eq. �B30�, we immedi-

ately find from Eq. �22� that ��= �̄� and the solution is

�̃+ = M, �̃+ = As�, �+ = �̄+, �+ = 0,

�̃− = M, �̃− = As�, �− = �̄−, �− = 0. �B33�

It exists for

��̄+�� A + M, ��̄−�� A + M . �B34�

The physical meaning of these constraints is clear: they im-
ply that the LLL is neither completely filled nor empty.

�ii� Second group: Hybrid solutions.
�I-II�. By using Eqs. �B30� and �B31�, we analyze the

system of two Eqs. �22� for �+ and �− and find that the
solution

�̃+ = M, �̃+ = As�, �+ = �̄+ − 4A sgn��̄+� ,

�+ = 0,

�̃− = �̃− = 0, �− = �̄− − 3A sgn��̄−� , �B35�

�− = − s� sgn��̄−�M ,

exists for

3A − M � ��̄+�� 5A + M, 3A − M � ��̄−�� 3A ,

�B36�

sgn��̄+�sgn��̄−� 0.

�I-III�. In this case, using Eqs. �22�, �B30�, and �B32�, we
find the solution

�̃+ = M, �̃+ = As�, �+ = �̄+ − 4A sgn��̄+� ,

�+ = 0,

�̃− = �̃− = 0, �− = �̄− − 3A sgn��̄−� , �B37�

�− = − s� sgn��̄−�M ,

which exists for

3A − M � ��̄+�� 5A + M, ��̄−� 3A , �B38�

sgn��̄+�sgn��̄−� 0.

�iii� Third group: Singlet Dirac masses.
�II-II�. Using Eq. �B31� and analyzing Eqs. �22� for �+

and �−, we find the solution

�̃+ = �̃+ = 0, �+ = �̄+ − 7A sgn��̄+� ,

�+ = − s� sgn��̄+�M ,
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�̃− = �̃− = 0, �− = �̄− − 7A sgn��̄−� , �B39�

�− = − s� sgn��̄−�M ,

which exists for

7A − M � ��̄+�� 7A, 7A − M � ��̄−�� 7A , �B40�

sgn��̄+�sgn��̄−� 0.

Formally, there is also another solution,

�̃+ = �̃+ = 0, �+ = �̄+ − A sgn��̄+�, �+ = s� sgn��̄+�M ,

�̃− = �̃− = 0, �− = �̄− − A sgn��̄−�, �− = s� sgn��̄−�M ,

�B41�

which exists for

A� ��̄+�� A + M, A� ��̄−�� A + M , �B42�

sgn��̄+�sgn��̄−�� 0.

However, because of the latter inequalities, it is easy to
check that this solution does not satisfy the condition Z�A
and therefore is not realized for magnetic fields �B��
�45 T.

�II-III�. As in the previous case, there are two solutions.
The first solution, II-III-1,

�̃+ = �̃+ = 0, �+ = �̄+ − A sgn��̄+�, �+ = s� sgn��̄+�M ,

�̃− = �̃− = 0, �− = �̄− + A sgn��̄+�, �− = − s� sgn��̄+�M ,

�B43�

exists for

A� ��̄+�� A + M, �̄− sgn��̄+� − A . �B44�

The second solution, II-III-2,

�̃+ = �̃+ = 0, �+ = �̄+ − 7A sgn��̄+� ,

�+ = − s� sgn��̄+�M ,

�̃− = �̃− = 0, �− = �̄− − 7A sgn��̄−� , �B45�

�− = − s� sgn��̄−�M ,

exists for

7A − M � ��̄+�� 7A, �̄− sgn��̄+� 7A . �B46�

�III-III�. There are three solutions in this case. The first
solution, III-III-1,

�̃+ = �̃+ = 0, �+ = �̄+ − 7A sgn��̄+� ,

�+ = − s� sgn��̄+�M ,

�̃− = �̃− = 0, �− = �̄− − 7A sgn��̄−� , �B47�

�− = − s� sgn��̄−�M ,

exists for

��̄+� 7A, ��̄−� 7A, sgn��̄+�sgn��̄−� 0.

�B48�

The second solution, III-III-2, is

�̃+ = �̃+ = 0, �+ = �̄+ + A, �+ = − s�M ,

�̃− = �̃− = 0, �− = �̄− − A, �− = s�M . �B49�

It is realized for

�̄+  − A, �̄− � A . �B50�

The third solution, III-III-3,

�̃+ = �̃+ = 0, �+ = �̄+ − A, �+ = s�M ,

�̃− = �̃− = 0, �− = �̄− + A, �− = − s�M , �B51�

takes place for

�̄+ � A, �̄−  − A , �B52�

i.e., in fact, it is obtained from the second solution by inter-
changing spin subscripts + and −.

6. Dependence of solutions on electron chemical potential �0

and free-energy density of their ground states

The process of filling LLs is described by varying the
electron chemical potential �0. Therefore, it will be conve-
nient to express the intervals of the existence of the solutions
found in Appendix B 5 in terms of �0. Henceforth we will
consider �0�0. �Dynamics with negative �0 is related by
electron-hole symmetry and will not be discussed sepa-
rately.�

Some intermediate results of the analysis in this appendix
will depend on whether the inequality M2Z or M�2Z is
satisfied. We will consider both these cases and indicate ex-
plicitly which inequality is satisfied for a particular solution.
If nothing will be said, this means that the corresponding
results are valid in both cases. Fortunately, the final results
do not depend on whether M2Z or M�2Z.

Taking into account that �̄�=�0�Z, we find the intervals
of existence for solutions. These are given in Table I. Using
this information, we see that some solutions may coexist.
The list of coexisting solutions for a set of nonoverlapping
intervals of �0 is summarized in Table II. 	We assume that
ZM −A�A� / �1−�� which is likely to be satisfied be-
cause, as will be shown in Sec. IV, realistic values for � in
this model are relatively small, ��0.2.


Thus, there are several coexistent solutions on different
intervals of �0. In order to find the most stable solution
among them, we have to calculate the free-energy density �
of the ground states corresponding to these solutions. To fa-
cilitate this, we first calculate the free-energy densities of the
fixed spin solutions I–III considered in Appendix B 4 by
using expression �C19� for � derived in Appendix C. The
results are
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solution I: �I = −
�eB��
4��c

	M + A + h
 , �B53�

solution II: �II = −
�eB��
4��c

	M − �� + �̄�sgn��� + h
 ,

�B54�

solution III: �III = −
�eB��
4��c

	M + �� + �̄�sgn��� + h
 ,

�B55�

where h is the higher LL contribution defined by

h � �
n=1

�
2M4

�n�B
2 + M2��n�B

2 + M2 + �n�B�2

�
M4

2�B
3 �%�3

2
� − %�5

2
�M2

�B
2 + O�M4

�B
4 �� , �B56�

where %�x� is the Riemann zeta function. On the right-hand
side we used the expansion in powers of �M /�B�2. When
keeping only the first two terms in the expansion, we find
that the result deviates by less than 1% from the exact one
for M�0.4�B. Note that the above contribution from higher
LLs is the same for all solutions. Therefore, it is only the
LLL contribution that is relevant for choosing the lowest
free-energy density.

It is not difficult now to calculate the free-energy densities
for all the solutions. In Table II, the solutions that have the
lowest values of � and thus correspond to the ground states
in the given intervals of �0 are marked by stars. As for the
explicit expression for the energy density in the ground state,
it reads

� = −
�eB��
2��c

	M + A + 2Z + h
 for 0��0 � 2A + Z ,

�B57�

� = −
�eB��
2��c

	M − A + Z + h + �0
 �B58�

for 2A + Z��0 � 6A + Z ,

TABLE I. Intervals of the existence of solutions relevant for the
dynamics in the LLL at T=0.

M2Z M�2Z

I-I 0��0�M +A−Z 0��0�M +A−Z

I-II M +A+Z��0�3A−Z No solution

II-I 3A−M +Z��0�3A+Z 3A−M +Z��0�3A+Z

I-III 3A−Z��0�5A+M +Z 3A−M +Z��0�5A+M +Z

III-I 3A+Z��0�5A+M −Z 3A+Z��0�5A+M −Z

II-II 7A−M +Z��0�7A−Z No solution

II-III-1 A+Z��0�M +A+Z A+Z��0�M +A+Z

II-III-2 7A−Z��0�7A+Z 7A−M +Z��0�7A+Z

III-II-1 A−Z��0�M +A−Z A−Z��0�M +A−Z

III-II-2 No solution No solution

III-III-1 7A+Z��0 7A+Z��0

III-III-2 0��0�A−Z 0��0�A−Z

III-III-3 0��0�A+Z 0��0�A+Z

TABLE II. The list of solutions that coexist in a set of nonoverlapping intervals of �0 relevant for the
dynamics in the LLL at T=0. The solutions with the lowest free-energy density are marked by stars.

No. Interval M2Z M�2Z

1 0��0�A−Z I-I, III-III-2, III-III-3� I-I, III-III-2, III-III-3�

2 A−Z��0�A+Z I-I, III-II, III-III-3� I-I, III-II, III-III-3�

3 A+Z��0�M +A−Z I-I, III-II, II-III-1� I-I, III-II, II-III-1�

4 M +A−Z��0�3A−M +Z II-III-1� II-III-1�

5 3A−M +Z��0�2A+Z I-II, II-I, II-III-1� I-III, II-I, II-III-1�

6 2A+Z��0�M +A+Z I-II�, II-I, II-III-1 I-III�, II-I, II-III-1

7 M +A+Z��0�3A−Z I-II�, II-I I-III�, II-I

8 3A−Z��0�3A+Z I-III�, II-I I-III�, II-I

9 3A+Z��0�5A+M −Z I-III�, III-I I-III�, III-I

10 5A+M −Z��0�7A−M +Z I-III� I-III�

11 7A−M +Z��0�6A+Z I-III�, II-II I-III�, II-III-2

12 6A+Z��0�5A+M +Z I-III, II-II� I-III, II-III-2�

13 5A+M +Z��0�7A−Z II-II� II-III-2�

14 7A−Z��0�7A+Z II-III-2� II-III-2�

15 7A+Z��0 III-III-1� III-III-1�
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� = −
�eB��
2��c

	M − 7A + h + 2�0
 for 6A + Z��0.

�B59�

Using now the explicit form of the solutions obtained in
Appendix B 5, we can significantly reduce the number of the
cases. As result, we conclude that only the following three
solutions are realized.

�i� The solution with singlet Dirac masses for both spin up
and spin down:

�̃+ = �̃+ = 0, �+ = �̄+ − A, �+ = s�M ,

�̃− = �̃− = 0, �− = �̄− + A, �− = − s�M . �B60�

It is the most favorable for 0��0�2A+Z.51 We will call it
the S1 solution, which is one of the several solutions with
nonvanishing singlet Dirac masses.

�ii� The hybrid solution with a triplet Dirac mass for spin
up and a singlet mass for spin down:

�̃+ = M, �̃+ = As�, �+ = �̄+ − 4A, �+ = 0,

�̃− = �̃− = 0, �− = �̄− − 3A, �− = − s�M . �B61�

It is the most favorable for 2A+Z��0�6A+Z. We will call
it the H1 solution.

�iii� The solution with equal singlet masses for both spin
up and spin down:

�̃+ = �̃+ = 0, �+ = �̄+ − 7A, �+ = − s�M ,

�̃− = �̃− = 0, �− = �̄− − 7A, �− = − s�M . �B62�

It is the most favorable for �06A+Z. We will call it the S2
solution.

APPENDIX C: FREE-ENERGY DENSITY

In this appendix, the units with �=1 and c=1 are used. In
order to calculate a free-energy density �, it is convenient to
use the Baym-Kadanoff formalism �the effective action for-
malism for composite operators� developed in Ref. 55 �see in
particular the last paper there�. In the mean-field approxima-
tion that we use, the corresponding effective action ! has the
following form:

!�G� = − i Tr	ln G−1 + S−1G − 1


+
Gint

2
� d3x�tr		0G�x,x�	0G�x,x�
 − 	tr�	0G�x,x��
2� ,

�C1�

where the trace, the logarithm, and the product S−1G are
taken in the functional sense, and G=diag�G+ ,G−�. The free-
energy density � is expressed through ! as �=−! /TV,
where TV is a space-time volume. The stationarity condition
�!�G� /�G=0 leads to gap Eq. �5�. On its solutions we have

! = − i Tr�ln G−1 +
1

2
�S−1G − 1�� . �C2�

Henceforth we will use the symmetric gauge with A�r�
= �−B�y /2,B�x /2�. Then, as was shown in Appendix A, the
Green’s function Gs�u ,u��, with u= �t ,r�, has the form

Gs�u,u�� = ei#�u,u��Ḡs�u − u�� , �C3�

where #�u ,u��=−er ·A�r�� is the Schwinger phase in the
symmetric gauge.

Because of the translation invariance in time, we have

Gs�u,u�� = �
−�

� d�

2�
e−i��t−t��Gs��;r,r�� . �C4�

Then the effective action ! can be rewritten as

! = − iT�
−�

� d�

2�
Tr�ln G−1��� +

1

2
�S−1���G��� − 1�� ,

�C5�

where

Gs
−1��;r,r�� = − i	�� + �s�	0 − vF�� · �� + i�̃s	

1	2

+ i�s	
0	1	2 − �̃s
��r − r�� , �C6�

Ss
−1��;r,r�� = − i	�� + �̄s�	0 − vF�� · ��
��r − r�� .

�C7�

In Eq. �C5� the functional operation Tr includes now the
integration over the space coordinates only and the trace over
matrix indices.

Integrating by parts the logarithm term in Eq. �C5� and
omitting the irrelevant surface term �independent of the
physical parameters�, we arrive at the expression

! = − iT�
−�

� d�

2�
Tr�− �

�G−1���
��

G���

+
1

2
	S−1���G��� − 1
� , �C8�

with

�G−1���
��

= − i	0��r − r�� . �C9�

Substituting now expression �C3� for the Green’s function in
!, one can see that the Schwinger phase goes away and we
get

! = − iTV�
−�

� d�

2�
tr�i	0�Ḡ��;0� +

1

2
	− i��� + �̄�	0

− vF�� · ���Ḡ��;r��r=0 − ��0�
� . �C10�

Dividing ! by the space-time volume TV, we find the free-
energy density,
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� = i�
−�

� d�

2�
� d2k

�2��2 tr�i�	0Ḡ��,k� +
1

2
	− i��� + �̄�	0 − vF�k · ���Ḡ��,k� − 1
�

= − �
−�

� d�

4�
� d2k

�2��2 tr�	�� − �̄�	0 + vF�k · ��
Ḡ��,k� + i� , �C11�

where the propagator Ḡs�� ,k� is given in Eq. �A21�. By making use of its explicit form, we can calculate the following two
integrals that contribute to the free-energy density:

� d2k

�2��2	
0Ḡs��,k� =

i

4�l2 �
n=0

�
�� + �s + i�̃s	

0	1	2 − i�s	
1	2 + �̃s	

0�Pn

�� + �s + i�̃s	
0	1	2�2 − ��̃s − i�s	

0	1	2�2 − 2vF
2 �eB��n

, �C12�

� d2k

�2��2vF�k · ��Ḡs��,k� =
i

�l2 �
n=0

�
vF

2 �eB��n��n − 1�

�� + �s + i�̃s	
0	1	2�2 − ��̃s − i�s	

0	1	2�2 − 2vF
2 �eB��n

, �C13�

where

Pn = 1 − i	1	2 sgn�eB�� + 	1 + i	1	2 sgn�eB��
��n − 1� . �C14�

In the calculation, we used formula 7.414.7 from Ref. 53, i.e.,

�
0

�

e−att�Ln
��t�dt =

!�� + n + 1��a − 1�n

n ! a�+n+1 , Re �  − 1, Re a 0. �C15�

By dropping an infinite divergent term which is independent of the physical parameters, from Eq. �C11� we derive the
following expression for the free-energy density:

� = −
i

�4�l�2 �
s=�

�
−�

�

d� trD�
n=0

� �� − �̄s�	� + �s + i�̃s	
0	1	2 − i�s	

1	2 + �̃s	
0
Pn + 4vF

2 �eB��n��n − 1�

�� + �s + i�̃s	
0	1	2�2 − ��̃s − i�s	

0	1	2�2 − 2vF
2 �eB��n

. �C16�

Here the trace trD is taken over the Dirac indices.

The free-energy density � is a function of �̃s, �̃s, �s, �s, �̄s, and B�. Normalizing � by subtracting its value at �̃s= �̃s
=�s=�s= �̄s=0, we obtain

� = −
i

�4�l�2 �
s=�

�
n=0

� �
−�

�

d� trD��� − �̄s�	� + �s + i�̃s	
0	1	2 − i�s	

1	2 + �̃s	
0
Pn + 4vF

2 �eB��n��n − 1�

	� + i� sgn��� + �s + i�̃s	
0	1	2
2 − ��̃s − i�s	

0	1	2�2 − 2vF
2 �eB��n

−
�2Pn + 4vF

2 �eB��n��n − 1�
	� + i� sgn���
2 − 2vF

2 �eB��n� . �C17�

One can check that for �̃s=�s=�s= �̄s=B�=0 and �̃+= �̃−= �̃ this expression reduces to

���̃,0,0,0,0,0� = −
�̃4

4�
�

0

� dx

��̃2 + x���̃2 + x + �x�2
= −

�̃3

6�
, �C18�

which coincides with the known expression for the vacuum energy density in 2+1 dimension.56

Finally, integrating over � and taking trace, we find the following expression for the free-energy density:

� = −
1

8�l2 �
s=�
�	�s + �̄s − �̃s − ��̃s + �s�sgn�eB��
sgn��s − �̃s�����s − �̃s� − ��̃s + �s�� + 	�̃s + �s − ��s + �̄s − �̃s�sgn�eB��



sgn��̃s + �s�����̃s + �s� − ��s − �̃s�� + 2�
n=1

� �	��s + �̄s − �̃s�sgn��s − �̃s� − 2�B
�n
����s − �̃s� − Ens

+ �

+
��̃s + �s�4��Ens

+ − ��s − �̃s��

Ens
+ �Ens

+ + �B
�n�2 � + 	�̃s → − �̃s, �s → − �s, sgn�eB�� → − sgn�eB��
� , �C19�

where Ens
�=�n�B

2 + ��̃s��s�2 and �B=�2vF
2 �eB��.
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APPENDIX D: ANALYTIC SOLUTIONS OF GAP
EQUATION FOR n=1 LL AT T=0

1. Fixed spin

In Appendix B, we analyzed solutions of the gap equa-
tions under the condition that only states on the LLL can be
filled, ��s��̃s���B=�2��eB��vF

2 /c. Since all the dynami-
cally generated parameters are much less than �B, this con-
dition implies that the bare chemical potential �0 also has to
satisfy �0��B in that case.

In this section, we will consider the case when �0 is of the
order of the Landau scale �B, i.e., we will study the dynamics
when states on the first Landau level, n=1 LL, can be filled.
The gap equations are given in Eqs. �19�–�22� in Sec. III. In
order to get their solutions for �0��B, we will follow the
steps in the analysis in Appendix B. The equations for the

dynamical parameters �̃s, �s, and �̃s form independent sys-
tems of equations for each spin. From these systems, we can
find their solutions as functions of �s. We obtain the follow-
ing three solutions.

�i� Solution f-I. This solution corresponds to the case with

��s− �̃s����B
2 + ��̃s+�s�2 and ��s+ �̃s����B

2 + ��̃s−�s�2. It
is

�s = − s� sgn��s�M, �̃s = �̃s = 0. �D1�

This solution exists for M� ��s����B
2 +M2. Actually, it is

exactly the same as solution �B28�. For positive �s, this so-
lution corresponds to a state with the completely filled LLL
and the empty n=1 LL. With increasing �s, this solution
exists up to the point where the first LL starts to fill, which is
defined by the upper limit of the above inequality for �s.
Recall that Xs=−4A sgn��s� for such a solution.

�ii� Solution f-II. This solution is realized when

the inequalities ��s− �̃s����B
2 + ��̃s+�s�2 and ��s+ �̃s�

��B
2 + ��̃s−�s�2 are satisfied. In this solution, all three dy-

namical parameters �s, �̃s, and �̃s are nonzero,

�̃s = − s� sgn��s�
M − M1

2
,

�s = − s� sgn��s�
M1 + M

2
, �̃s = sgn��s�A . �D2�

Here M1 satisfies the following equation:

1 =
A
���1/�2

� dy
�y

e−yM1
2�coth� �B

2

2
y� − 2 exp�− y�B

2�� .

�D3�

Note that the last term in the square brackets of the integrand
appears because the n=1 LL contribution is absent in the

equation for �̃−� 	cf. Eq. �B6� where all LLs are included
.
Utilizing the analysis in the second paper in Ref. 28, we

arrive at the following gap equation for M1:

1 = � +
A

M1
+

2A

�B
%�1

2
,1 +

M1
2

�B
2 � −

2A

��B
2 + M1

2
+ O��M1

2

�2 � ,

�D4�

where %�z ,q� is the generalized Riemann zeta function.53 In
the subcritical regime ���1� its solution is given by

M1 �
A

1 − � + 2	1 − %�1/2�
A/�B
. �D5�

Since the last term in the denominator is positive, we have
M1�M that is consistent with the fact that the equation for

�̃−� misses the contribution of the n=1 LL.
This solution exists for ��B

2 +M1
2−A� ��s����B

2 +M2+A.
One can check that the corresponding parameter Xs is Xs=
−8A sgn��s�. As in the case of the LLL �see Appendix B 4�,
there is another solution with �̃s, �̃s replaced by −�̃s, −�̃s,

which takes place for ��s− �̃s���B
2 + ��̃s+�s�2 and ��s

+ �̃s����B
2 + ��̃s−�s�2. These two solutions are equivalent:

one can see this from dispersion relations �17� and �18� by
transforming �→−� there, i.e., as in the case of the LLL
solution I 	Eq. �B30�
, these solutions are related to two de-
generate ground states connected by a SU�2�s �or Z2s� flavor
transformation.

�iii� Solution f-III. This solution corresponds to the

case with ��s− �̃s���B
2 + ��̃s+�s�2 and ��s+ �̃s�

��B
2 + ��̃s−�s�2. Its explicit form reads

�̃s = �̃s = 0, �s = − s� sgn��s�M1. �D6�

This solution takes place for ��s���B
2 +M1

2 and the corre-
sponding Xs is Xs=−12A sgn��s�.

2. Including both spin up and spin down

In Appendix D 1, the solutions for the dynamical param-

eters �s, �̃s, and �̃s at fixed spin were described. Since X
contains contribution of fields of both spins, the equations
for chemical potentials �+ and �− for fields of different spin
are coupled and have to be solved together. Since we can
choose any of the found three solutions for masses at a fixed
spin, we should solve nine systems of coupled equations for
�+ and �−. Like in the case of the LLL, it is enough to
consider only six systems. The simplest case is solution f-I–
f-I because it corresponds to the case of completely filled
LLL, which was already considered in Appendix B 5. We
have

�i� f-I–f-I solution is given by

�̃+ = �̃+ = 0, �+ = �̄+ − 7A sgn��̄+� ,

�+ = − s� sgn��̄+�M ,

�̃− = �̃− = 0, �− = �̄− − 7A sgn��̄−� , �D7�

�− = − s� sgn��̄−�M .

It exists when sgn��̄+�sgn��̄−�0 and
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7A + M � ��̄+�� 7A + ��B
2 + M2,

7A + M � ��̄−�� 7A + ��B
2 + M2. �D8�

It coincides with solution III-III-1 in Eq. �B47�, except for
having a different lower limit for ��̄��. The latter is con-
nected with the point that while solution III in Eq. �B32�
exists for all values of �s, solution f-I in Eq. �D1� exists only
for ��s�M. This is because, according to the analysis in
Appendix B 4, solution III is a combination of two solutions:
solution �B28�, which is equivalent to solution f-I, and one of
the two solutions in Eq. �B10�.

�ii� f-I–f-II solution is given by

�̃+ = �̃+ = 0, �+ = �̄+ − 11A sgn��̄+� ,

�+ = − s� sgn��̄+�M ,

�̃− =
M − M1

2
, �̃− = − As�, �− = �̄− − 10A sgn��̄−� ,

�D9�

�− = − s� sgn��̄−�
M + M1

2
.

It exists when sgn��̄+�sgn��̄−�0 and

11A + M � ��̄+�� 11A + ��B
2 + M2,

9A + ��B
2 + M1

2 � ��̄−�� 11A + ��B
2 + M2. �D10�

�iii� f-I–f-III solution reads

�̃+ = �̃+ = 0,

�+ = �̄+ − 15A sgn��̄+�, �+ = − s� sgn��̄+�M ,

�̃− = �̃− = 0, �D11�

�− = �̄− − 13A sgn��̄−�, �− = − s� sgn��̄−�M1,

and takes place when sgn��̄+�sgn��̄−�0 and

15A + M � ��̄+�� 15A + ��B
2 + M2,

13A + ��B
2 + M1

2 � ��̄−� . �D12�

�iv� f-II–f-II solution is given by

�̃+ =
M − M1

2
, �̃+ = − As�,

�+ = �̄+ − 14A sgn��̄+�, �+ = − s� sgn��̄+�
M + M1

2
,

�̃− =
M − M1

2
, �̃− = − As�, �D13�

�− = �̄− − 14A sgn��̄−�, �− = − s� sgn��̄−�
M + M1

2
,

and exists when sgn��̄+�sgn��̄−�0 and

13A + ��B
2 + M1

2 � ��̄��� 15A + ��B
2 + M2. �D14�

�v� f-II–f-III solution is given by

�̃+ =
M − M1

2
, �̃+ = − As�, �+ = �̄+ − 18A sgn��̄+� ,

�+ = − s� sgn��̄+�
M + M1

2
,

�̃− = �̃− = 0, �− = �̄− − 17A sgn��̄−� , �D15�

�− = − s� sgn��̄−�M1,

and takes place when sgn��̄+�sgn��̄−�0 and

17A + ��B
2 + M1

2 � ��̄+�� 19A + ��B
2 + M2,

��̄−� 17A + ��B
2 + M1

2. �D16�

�vi� f-III–f-III solution is given by

�̃+ = �̃+ = 0, �+ = �̄+ − 21A sgn��̄+� ,

�+ = − s� sgn��̄+�M1,

�̃− = �̃− = 0, �− = �̄− − 21A sgn��̄−� , �D17�

�− = − s� sgn��̄−�M1,

and exists when sgn��̄+�sgn��̄−�0 and

��̄+� 21A + ��B
2 + M1

2, ��̄−� 21A + ��B
2 + M1

2.

�D18�

3. Dependence of solutions on �0 and their
free-energy density energy

Using the solutions found in Appendix D 2, we find that
the intervals of their existence in terms of �0 for �0�0
�dynamics with negative �0 is related by the electron-hole
symmetry and will not be discussed separately�. These are
given in Table III. By making use of this information, we can
also determine the complete set of nonoverlapping intervals
of �0 and the solutions that �co�exist on such intervals. This
is summarized in Table IV.

Thus, there are several coexistent solutions on certain in-
tervals of �0. In order to define which solutions are realized,
we have to calculate their free-energy densities. To facilitate
this calculation, first we will calculate free-energy densities
of solutions f-I, f-II, and f-III. Using the effective potential
given by Eq. �C19�, we have
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solution f-I: �f-I = −
�eB��
4��c

	M + �� + �̄�sgn��� + h
 ,

�D19�

solution f-II: �f-II = −
�eB��
4��c

�M + M1

2
+ A

+ 2�� + �̄�sgn��� − 2�B +
h + h1

2
� ,

�D20�

solution f-III: �f-III = −
�eB��
4��c

	M1 + 3�� + �̄�sgn���

− 4�B + h1
 , �D21�

where h is given in Eq. �B56� and

h1 � �
n=2

�
2M1

4

�n�B
2 + M1

2��n�B
2 + M1

2 + �n�B�2

�
M1

4

2�B
3 �%�3/2� − 1 − 	%�5/2� − 1


M1
2

�B
2 + O�M1

4

�B
4 �� .

�D22�

Now it is not difficult to calculate free-energy densities for

all solutions and determine the ground state on each interval.
The solutions with the lowest free-energy density are marked
by stars in Table IV. The explicit forms of the corresponding
energy densities are

f-I-f-I: � = −
�eB��
2��c

�M + 2�0 − 7A + h� , �D23�

f-I-f-II: � = −
�eB��
2��c

�3M + M1

4
+ 3�0

− 15A − �B + Z +
3h + h1

4
� , �D24�

f-I-f-III: � = −
�eB��
2��c

�M + M1

2
+ 4�0

− 27A − 2�B + 2Z +
h + h1

2
� , �D25�

f-II-f-III: � = −
�eB��
2��c

�3M1 + M

4
+ 5�0

− 43A − 3�B + Z +
3h1 + h

4
� , �D26�

f-III-f-III: � = −
�eB��
2��c

�M1 + 6�0 − 63A − 4�B + h1� .

�D27�

Therefore, the number of different solutions is reduced down
to following five.

�f-i� Solution f-I–f-I,

�̃+ = �̃+ = 0, �+ = �̄+ − 7A, �+ = − s�M ,

�̃− = �̃− = 0, �− = �̄− − 7A, �− = − s�M , �D28�

is realized for 7A+M +Z��0�7A+��B
2 +M2−Z and has

free-energy density in Eq. �D23�. This result means that the
solution S2 given by Eq. �B62� takes place for �0�7A
+��B

2 +M2−Z.

TABLE III. Intervals of the existence of solutions relevant for
the dynamics in the n=1 LL at T=0.

f-I–f-I 7A+M +Z��0�7A+��B
2 +M2−Z

f-I–f-II 9A+��B
2 +M1

2−Z��0�11A+��B
2 +M2−Z

f-II–f-I 9A+��B
2 +M1

2+Z��0�11A+��B
2 +M2−Z

f-I–f-III 13A+��B
2 +M1

2−Z��0�15A+��B
2 +M2+Z

f-III–f-I 13A+��B
2 +M1

2+Z��0�15A+��B
2 +M2−Z

f-II–f-II 13A+��B
2 +M1

2+Z��0�15A+��B
2 +M2−Z

f-II–f-III 17A+��B
2 +M1

2+Z��0�19A+��B
2 +M2+Z

f-III–f-II 17A+��B
2 +M1

2+Z��0�19A+��B
2 +M2−Z

f-III–f-III �021A+��B
2 +M1

2+Z

TABLE IV. The list of solutions that coexist in a set of nonoverlapping intervals of �0 relevant for the
dynamics in the n=1 LL at T=0. The solutions with the lowest free-energy density are marked by stars.

No. Interval Solution�s�

1 7A+M +Z��0�7A+��B
2 +M2−Z f-I-f-I�

2 9A+��B
2 +M1

2−Z��0�9A+��B
2 +M1

2+Z f-I-f-II�

3 9A+��B
2 +M1

2+Z��0�11A+��B
2 +M2−Z f-I-f-II�, f-II–f-I

4 13A+��B
2 +M1

2−Z��0�13A+��B
2 +M1

2+Z f-I-f-III�

5 13A+��B
2 +M1

2+Z��0�15A+��B
2 +M2−Z f-I-f-III�, f-III–f-I, f-II–f-II

6 15A+��B
2 +M2−Z��0�15A+��B

2 +M2+Z f-I-f-III�

7 17A+��B
2 +M1

2+Z��0�19A+��B
2 +M2−Z f-II-f-III�, f-III–f-II

8 19A+��B
2 +M2−Z��0�19A+��B

2 +M2+Z f-II-f-III�

9 �021A+��B
2 +M1

2+Z f-III-f-III�
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�f-ii� Solution f-I–f-II,

�̃+ = �̃+ = 0, �+ = �̄+ − 11A, �+ = − s�M ,

�̃− =
M − M1

2
, �̃− = − As�, �− = �̄− − 10A ,

�D29�

�− = − s�

M + M1

2
,

takes place for 9A+��B
2 +M1

2−Z��0�11A+��B
2 +M2−Z

and has free-energy density in Eq. �D24�.
�f-iii� Solution f-I–f-III,

�̃+ = �̃+ = 0, �+ = �̄+ − 15A, �+ = − s�M ,

�̃− = �̃− = 0, �− = �̄− − 13A, �− = − s�M1,

�D30�

is realized for 13A+��B
2 +M1

2−Z��0�15A+��B
2 +M2+Z

and has free-energy density in Eq. �D25�.
�f-iv� Solution f-II–f-III,

�̃+ =
M − M1

2
, �̃+ = − As�, �+ = �̄+ − 18A ,

�+ = − s�

M + M1

2
,

�̃− = �̃− = 0, �− = �̄− − 17A, �− = − s�M1,

�D31�

takes place for 17A+��B
2 +M1

2+Z��0�19A+��B
2 +M2+Z

and has free-energy density in Eq. �D26�.
�f-v� Solution f-III–f-III,

�̃+ = �̃+ = 0, �+ = �̄+ − 21A, �+ = − s�M1,

�̃− = �̃− = 0, �− = �̄− − 21A, �− = − s�M1,

�D32�

is realized for �021A+��B
2 +M1

2+Z and has free-energy
density in Eq. �D27�.
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